In this paper,we consider a 2-degrees-of-freedom(DOF)helicopter system subject to long input delays and uncertain system parameters.To address the challenges including unknown system parameters and input delays in con...In this paper,we consider a 2-degrees-of-freedom(DOF)helicopter system subject to long input delays and uncertain system parameters.To address the challenges including unknown system parameters and input delays in control design,we develop an adaptive predictor-feedback control law to achieve trajectory tracking.Stability of the closed-loop system is further established,where the tracking errors are shown to converge towards zero.Through simulation and experiments on the helicopter system,we illustrate that tracking of a desired trajectory is achieved with the proposed control scheme.展开更多
Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast ele...Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.展开更多
This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topolog...This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topologies as a continuous-time Markov process and taking the distributed delays into consideration,a novel distributed containment observer is proposed to estimate the convex hull spanned by the leaders'states.A novel distributed output feedback containment controller is then designed without using the prior knowledge of distributed delays.By constructing a novel switching Lyapunov functional,the output containment control problem is then solved in the sense of mean square under an easily-verifiable sufficient condition.Finally,two numerical examples are given to show the effectiveness of the proposed controller.展开更多
Dear Editor,This letter studies the problem of sliding mode control(SMC)design for recurrent neural networks(RNNs)with impulsive disturbances and time-varying transmission delays.To this end,an appropriate integral sl...Dear Editor,This letter studies the problem of sliding mode control(SMC)design for recurrent neural networks(RNNs)with impulsive disturbances and time-varying transmission delays.To this end,an appropriate integral sliding surface function and SMC law are adopted for use under impulsive disturbances and time-varying delays.展开更多
This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication...This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication links,a novel distributed controller based on a cyclic pursuit strategy is developed in which each agent needs only its leading neighbour’s information.In contrast to existing works,we propose a set of new potential functions to deal with heterogeneous communication ranges and communication delays simultaneously.A new framework based on the admissible upper bound of the formation error is established so that both connectivity maintenance and order preservation can be achieved at the same time.It is shown that the multi-agent system can be driven to the desired circular formation as time goes to infinity under the proposed controller.Finally,the effectiveness of the proposed method is illustrated by some simulation examples.展开更多
This paper constructed and studied a nonresident computer virus model with age structure and two delays effects. The non-negativity and boundedness of the solution of the model have been discussed, and then gave the b...This paper constructed and studied a nonresident computer virus model with age structure and two delays effects. The non-negativity and boundedness of the solution of the model have been discussed, and then gave the basic regeneration number, and obtained the conditions for the existence and the stability of the virus-free equilibrium and the computer virus equilibrium. Theoretical analysis shows the conditions under which the model undergoes Hopf bifurcation in three different cases. The numerical examples are provided to demonstrate the theoretical results.展开更多
Background:Maternal mortality is a prevalent issue in healthcare provision worldwide.It is particularly common in developing and underdeveloped countries,where maternal deaths during childbirth or pregnancy occur freq...Background:Maternal mortality is a prevalent issue in healthcare provision worldwide.It is particularly common in developing and underdeveloped countries,where maternal deaths during childbirth or pregnancy occur frequently.Various internal and external factors contribute to the high maternal mortality rate in specific regions.One model,known as the three delays model approach,examines three distinct causes that contribute to this problem.The first delay is the lack of awareness in seeking timely healthcare,the second delay involves obstacles in reaching healthcare facilities on time,and the third delay relates to poor or inadequate healthcare provision in tertiary care facilities.These delays are responsible for the elevated maternal mortality rates,with the prevalence of each delay varying across regions.Objective:The objective of this literature review is to examine and critically evaluate existing literature on perceptions and investigations regarding maternal mortality in Southeast Asia,Europe and Africa,utilizing the three delays model approach as a categorization framework.Method:This literature review followed BEME guide No.3.A total of 18 articles were included in the sample after conducting a thorough search of various databases and search engines.A Prisma flowchart was created,and the articles were critically appraised.Results:A total of 18 articles focusing on different regions were analyzed.The findings revealed that in countries of Southeast Asia,the primary cause of maternal mortality is the first delay,which refers to the lack of awareness in seeking medical care.On the other hand,in Africa and other European countries,the second and third delays are more prominently associated with maternal mortality.Conclusion:Inadequate care is one of the major causes of maternal mortality in majority of regions acrossthe globe.Multiple factors can hinder access to appropriate healthcare.The three delays model plays a significant role in the higher maternal mortality rate.By raising awareness among women and their families about the importance of seeking healthcare,the risk of fatality can be reduced.Similarly,in developing regions,it is crucial to ensure that healthcare facilities are easily accessible and provide high-quality emergency obstetric care to meet the needs of pregnant women in critical situations.展开更多
A memristor-coupled heterogenous neural network consisting of two-dimensional(2D)FitzHugh–Nagumo(FHN)and Hindmarsh–Rose(HR)neurons with two time delays is established.Taking the time delays as the control parameters...A memristor-coupled heterogenous neural network consisting of two-dimensional(2D)FitzHugh–Nagumo(FHN)and Hindmarsh–Rose(HR)neurons with two time delays is established.Taking the time delays as the control parameters,the existence of Hopf bifurcation near the stable equilibrium point in four cases is derived theoretically,and the validity of the Hopf bifurcation condition is verified by numerical analysis.The results show that the two time delays can make the stable equilibrium point unstable,thus leading to periodic oscillations induced by Hopf bifurcation.Furthermore,the time delays in FHN and HR neurons have different effects on the firing activity of neural network.Complex firing patterns,such as quiescent state,chaotic spiking,and periodic spiking can be induced by the time delay in FHN neuron,while the neural network only exhibits quiescent state and periodic spiking with the change of the time delay in HR neuron.Especially,phase synchronization between the heterogeneous neurons is explored,and the results show that the time delay in HR neurons has a greater effect on blocking the synchronization than the time delay in FHN neuron.Finally,the theoretical analysis is verified by circuit simulations.展开更多
Bilateral teleoperation system is referred to as a promising technology to extend human actions and intelligence to manipulating objects remotely.For the tracking control of teleoperation systems,velocity measurements...Bilateral teleoperation system is referred to as a promising technology to extend human actions and intelligence to manipulating objects remotely.For the tracking control of teleoperation systems,velocity measurements are necessary to provide feedback information.However,due to hardware technology and cost constraints,the velocity measurements are not always available.In addition,the time-varying communication delay makes it challenging to achieve tracking task.This paper provides a solution to the issue of real-time tracking for teleoperation systems,subjected to unavailable velocity signals and time-varying communication delays.In order to estimate the velocity information,immersion and invariance(I&I)technique is employed to develop an exponential stability velocity observer.For the proposed velocity observer,a linear relationship between position and observation state is constructed,through which the need of solving partial differential and certain integral equations can be avoided.Meanwhile,the mean value theorem is exploited to separate the observation error terms,and hence,all functions in our observer can be analytically expressed.With the estimated velocity information,a slave-torque feedback control law is presented.A novel Lyapunov-Krasovskii functional is constructed to establish asymptotic tracking conditions.In particular,the relationship between the controller design parameters and the allowable maximum delay values is provided.Finally,simulation and experimental results reveal that the proposed velocity observer and controller can guarantee that the observation errors and tracking error converge to zero.展开更多
High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading del...High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading delays on a network scale. Studying the delay propagation mechanism could help to improve the timetable resilience in the planning stage and realize cooperative rescheduling for dispatchers. To quickly and effectively predict the spatial-temporal range of cascading delays, this paper proposes a max-plus algebra based delay propagation model considering trains’ operation strategy and the systems’ constraints. A double-layer network based breadth-first search algorithm based on the constraint network and the timetable network is further proposed to solve the delay propagation process for different kinds of emergencies. The proposed model could deal with the delay propagation problem when emergencies occur in sections or stations and is suitable for static emergencies and dynamic emergencies. Case studies show that the proposed algorithm can significantly improve the computational efficiency of the large-scale HSR network. Moreover, the real operational data of China HSR is adopted to verify the proposed model, and the results show that the cascading delays can be timely and accurately inferred, and the delay propagation characteristics under three kinds of emergencies are unfolded.展开更多
Multiplex Ligation-Dependent Probe Amplification (MLPA) was used to study the integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiatio...Multiplex Ligation-Dependent Probe Amplification (MLPA) was used to study the integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation. WTK1 cells contain a p53 mutation, whereas the TK6 cell line has the native p53 tumor-suppressor gene. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. Using probes that target specific regions on chromosomes associated with a distinct subset of microdeletions and microduplications either established or thought to be responsible for intellectual disability or developmental delay, we have demonstrated that WTK1 and TK6 are not impacted in the same way by irradiation. Instead, each cell line presents its own unique MLPA profile. The most notable differences are the appearance of nine unique probe signals only seen in WTK1 cells. These results are important in the study of how different cell lines can be affected in significantly different ways depending on the presence or absence of wild type p53.展开更多
Construction delay is a widespread issue in the construction industry of developing countries, and Nepal is no exception. These delays extend project durations and lead to cost overruns and disputes among stakeholders...Construction delay is a widespread issue in the construction industry of developing countries, and Nepal is no exception. These delays extend project durations and lead to cost overruns and disputes among stakeholders. To address this problem, this study aimed to identify and analyze the significant factors that contribute to construction project delays in Nepal. To gather data, a well-structured questionnaire was developed and administered to a sample of 100 participants, including contractors, consultants, and civil engineers. Various statistical tests were conducted to ensure the data’s integrity and consistency, such as reliability assessments and factor analyses. The findings of the study highlighted multiple factors contributing to delays in construction projects such as inadequate design, poor communication, and coordination among stakeholders, insufficient experience and planning by contractors, delays in material delivery and testing, labor-related problems including shortages and low qualifications, and external factors like regulatory changes and unforeseen circumstances. By identifying these major causes of construction project delays, this study presented insightful information that can contribute to the analysis and evaluation of project performance.展开更多
In networked control systems (NCS), the main problem is time delays induced by communication network, which can deteriorate the performance of the systems, even cause the systems instability. If we know the exact netw...In networked control systems (NCS), the main problem is time delays induced by communication network, which can deteriorate the performance of the systems, even cause the systems instability. If we know the exact network delays, we can compensate for their effect by modifying the parameters of the controller. Hence how to get the knowledge of these delays in the network is critical. This paper analyzed the different characteristics of network delays from sensor to controller and from controller to actuator and presented the methods of online evaluation of these delays. The experiment shows these methods are valid.展开更多
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and th...The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.展开更多
This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed c...This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.展开更多
Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional pl...Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.展开更多
In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are s...In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.展开更多
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (...An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.展开更多
In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By u...In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.展开更多
基金partially supported by the DEEPCOBOT project under Grant 306640/O70 funded by the Research Council of Norway.
文摘In this paper,we consider a 2-degrees-of-freedom(DOF)helicopter system subject to long input delays and uncertain system parameters.To address the challenges including unknown system parameters and input delays in control design,we develop an adaptive predictor-feedback control law to achieve trajectory tracking.Stability of the closed-loop system is further established,where the tracking errors are shown to converge towards zero.Through simulation and experiments on the helicopter system,we illustrate that tracking of a desired trajectory is achieved with the proposed control scheme.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.92150105,11834004,12227807,and 12241407)the Science and Technology Commission of Shanghai Municipality (Grant No.21ZR1420100)。
文摘Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.
文摘This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topologies as a continuous-time Markov process and taking the distributed delays into consideration,a novel distributed containment observer is proposed to estimate the convex hull spanned by the leaders'states.A novel distributed output feedback containment controller is then designed without using the prior knowledge of distributed delays.By constructing a novel switching Lyapunov functional,the output containment control problem is then solved in the sense of mean square under an easily-verifiable sufficient condition.Finally,two numerical examples are given to show the effectiveness of the proposed controller.
文摘Dear Editor,This letter studies the problem of sliding mode control(SMC)design for recurrent neural networks(RNNs)with impulsive disturbances and time-varying transmission delays.To this end,an appropriate integral sliding surface function and SMC law are adopted for use under impulsive disturbances and time-varying delays.
基金supported in part by the National Natural Science Foundation of China(61773327,62273182)the Research Grants Council of the Hong Kong Special Administrative Region of China(CityU/11217619)the Fundamental Research Funds for the Central Universities(30921011213)。
文摘This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication links,a novel distributed controller based on a cyclic pursuit strategy is developed in which each agent needs only its leading neighbour’s information.In contrast to existing works,we propose a set of new potential functions to deal with heterogeneous communication ranges and communication delays simultaneously.A new framework based on the admissible upper bound of the formation error is established so that both connectivity maintenance and order preservation can be achieved at the same time.It is shown that the multi-agent system can be driven to the desired circular formation as time goes to infinity under the proposed controller.Finally,the effectiveness of the proposed method is illustrated by some simulation examples.
文摘This paper constructed and studied a nonresident computer virus model with age structure and two delays effects. The non-negativity and boundedness of the solution of the model have been discussed, and then gave the basic regeneration number, and obtained the conditions for the existence and the stability of the virus-free equilibrium and the computer virus equilibrium. Theoretical analysis shows the conditions under which the model undergoes Hopf bifurcation in three different cases. The numerical examples are provided to demonstrate the theoretical results.
文摘Background:Maternal mortality is a prevalent issue in healthcare provision worldwide.It is particularly common in developing and underdeveloped countries,where maternal deaths during childbirth or pregnancy occur frequently.Various internal and external factors contribute to the high maternal mortality rate in specific regions.One model,known as the three delays model approach,examines three distinct causes that contribute to this problem.The first delay is the lack of awareness in seeking timely healthcare,the second delay involves obstacles in reaching healthcare facilities on time,and the third delay relates to poor or inadequate healthcare provision in tertiary care facilities.These delays are responsible for the elevated maternal mortality rates,with the prevalence of each delay varying across regions.Objective:The objective of this literature review is to examine and critically evaluate existing literature on perceptions and investigations regarding maternal mortality in Southeast Asia,Europe and Africa,utilizing the three delays model approach as a categorization framework.Method:This literature review followed BEME guide No.3.A total of 18 articles were included in the sample after conducting a thorough search of various databases and search engines.A Prisma flowchart was created,and the articles were critically appraised.Results:A total of 18 articles focusing on different regions were analyzed.The findings revealed that in countries of Southeast Asia,the primary cause of maternal mortality is the first delay,which refers to the lack of awareness in seeking medical care.On the other hand,in Africa and other European countries,the second and third delays are more prominently associated with maternal mortality.Conclusion:Inadequate care is one of the major causes of maternal mortality in majority of regions acrossthe globe.Multiple factors can hinder access to appropriate healthcare.The three delays model plays a significant role in the higher maternal mortality rate.By raising awareness among women and their families about the importance of seeking healthcare,the risk of fatality can be reduced.Similarly,in developing regions,it is crucial to ensure that healthcare facilities are easily accessible and provide high-quality emergency obstetric care to meet the needs of pregnant women in critical situations.
基金the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).
文摘A memristor-coupled heterogenous neural network consisting of two-dimensional(2D)FitzHugh–Nagumo(FHN)and Hindmarsh–Rose(HR)neurons with two time delays is established.Taking the time delays as the control parameters,the existence of Hopf bifurcation near the stable equilibrium point in four cases is derived theoretically,and the validity of the Hopf bifurcation condition is verified by numerical analysis.The results show that the two time delays can make the stable equilibrium point unstable,thus leading to periodic oscillations induced by Hopf bifurcation.Furthermore,the time delays in FHN and HR neurons have different effects on the firing activity of neural network.Complex firing patterns,such as quiescent state,chaotic spiking,and periodic spiking can be induced by the time delay in FHN neuron,while the neural network only exhibits quiescent state and periodic spiking with the change of the time delay in HR neuron.Especially,phase synchronization between the heterogeneous neurons is explored,and the results show that the time delay in HR neurons has a greater effect on blocking the synchronization than the time delay in FHN neuron.Finally,the theoretical analysis is verified by circuit simulations.
基金supported in part by the National Science Foundation(NSF)of China(61973263)the National Natural Science Foundation of China Outstanding Youth Fund(62222314)+5 种基金Youth Talent Program of Hebei(BJ2020031,BJ2019047)the Excellent Youth Project for NSF of Hebei Province(F2021203056)the Distinguished Young Foundation of Hebei Province(F2022203001)the Central Guidance Local Foundation of Hebei Province(226Z3201G)the Three-Three-Three Foundation of Hebei Province(C20221019)the Innovation Capability Improvement Plan Project of Hebei Province(22567626H)。
文摘Bilateral teleoperation system is referred to as a promising technology to extend human actions and intelligence to manipulating objects remotely.For the tracking control of teleoperation systems,velocity measurements are necessary to provide feedback information.However,due to hardware technology and cost constraints,the velocity measurements are not always available.In addition,the time-varying communication delay makes it challenging to achieve tracking task.This paper provides a solution to the issue of real-time tracking for teleoperation systems,subjected to unavailable velocity signals and time-varying communication delays.In order to estimate the velocity information,immersion and invariance(I&I)technique is employed to develop an exponential stability velocity observer.For the proposed velocity observer,a linear relationship between position and observation state is constructed,through which the need of solving partial differential and certain integral equations can be avoided.Meanwhile,the mean value theorem is exploited to separate the observation error terms,and hence,all functions in our observer can be analytically expressed.With the estimated velocity information,a slave-torque feedback control law is presented.A novel Lyapunov-Krasovskii functional is constructed to establish asymptotic tracking conditions.In particular,the relationship between the controller design parameters and the allowable maximum delay values is provided.Finally,simulation and experimental results reveal that the proposed velocity observer and controller can guarantee that the observation errors and tracking error converge to zero.
基金supported by the National Natural Science Foundation of China (U1834211, 61925302, 62103033)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems (20210104)。
文摘High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading delays on a network scale. Studying the delay propagation mechanism could help to improve the timetable resilience in the planning stage and realize cooperative rescheduling for dispatchers. To quickly and effectively predict the spatial-temporal range of cascading delays, this paper proposes a max-plus algebra based delay propagation model considering trains’ operation strategy and the systems’ constraints. A double-layer network based breadth-first search algorithm based on the constraint network and the timetable network is further proposed to solve the delay propagation process for different kinds of emergencies. The proposed model could deal with the delay propagation problem when emergencies occur in sections or stations and is suitable for static emergencies and dynamic emergencies. Case studies show that the proposed algorithm can significantly improve the computational efficiency of the large-scale HSR network. Moreover, the real operational data of China HSR is adopted to verify the proposed model, and the results show that the cascading delays can be timely and accurately inferred, and the delay propagation characteristics under three kinds of emergencies are unfolded.
文摘Multiplex Ligation-Dependent Probe Amplification (MLPA) was used to study the integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation. WTK1 cells contain a p53 mutation, whereas the TK6 cell line has the native p53 tumor-suppressor gene. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. Using probes that target specific regions on chromosomes associated with a distinct subset of microdeletions and microduplications either established or thought to be responsible for intellectual disability or developmental delay, we have demonstrated that WTK1 and TK6 are not impacted in the same way by irradiation. Instead, each cell line presents its own unique MLPA profile. The most notable differences are the appearance of nine unique probe signals only seen in WTK1 cells. These results are important in the study of how different cell lines can be affected in significantly different ways depending on the presence or absence of wild type p53.
文摘Construction delay is a widespread issue in the construction industry of developing countries, and Nepal is no exception. These delays extend project durations and lead to cost overruns and disputes among stakeholders. To address this problem, this study aimed to identify and analyze the significant factors that contribute to construction project delays in Nepal. To gather data, a well-structured questionnaire was developed and administered to a sample of 100 participants, including contractors, consultants, and civil engineers. Various statistical tests were conducted to ensure the data’s integrity and consistency, such as reliability assessments and factor analyses. The findings of the study highlighted multiple factors contributing to delays in construction projects such as inadequate design, poor communication, and coordination among stakeholders, insufficient experience and planning by contractors, delays in material delivery and testing, labor-related problems including shortages and low qualifications, and external factors like regulatory changes and unforeseen circumstances. By identifying these major causes of construction project delays, this study presented insightful information that can contribute to the analysis and evaluation of project performance.
文摘In networked control systems (NCS), the main problem is time delays induced by communication network, which can deteriorate the performance of the systems, even cause the systems instability. If we know the exact network delays, we can compensate for their effect by modifying the parameters of the controller. Hence how to get the knowledge of these delays in the network is critical. This paper analyzed the different characteristics of network delays from sensor to controller and from controller to actuator and presented the methods of online evaluation of these delays. The experiment shows these methods are valid.
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
基金The National Natural Science Foundation of China (No60574006)
文摘The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.
基金supported by the National Natural Science Foundation of China(No.60674050,60736022,10972002,60774089,60704039)
文摘This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249)in part by the Natural Science Foundation of CQCSTC (Grant Nos. 2009BA2024 and cstc2011jjA1320)in part by the State Key Laboratory of Power Transmission Equipment & System Securityand New Technology, Chongqing University (Grant No. 2007DA10512711206)
文摘Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.
基金supported by the National Natural Science Foundation of China(61273200,61273152,61202111,61304052,51407088)the Science Foundation of Education Office of Shandong Province of China(ZR2011FM07,BS2015DX018)
文摘In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.
基金supported by National Natural Science Foundation of China(No.60804021,No.60702063)
文摘An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.
基金supported in part by JSPS Fellows,No.237213 of Japan Society for the Promotion of Science to the first authorthe Grant MTM2010-18318 of the MICINN,Spanish Ministry of Science and Innovation to the second authorScientific Research (c),No.21540230 of Japan Society for the Promotion of Science to the third author
文摘In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.