期刊文献+
共找到3,693篇文章
< 1 2 185 >
每页显示 20 50 100
Damage Mechanism of Ultra-thin Asphalt Overlay(UTAO) based on Discrete Element Method
1
作者 杜晓博 GAO Liang +4 位作者 RAO Faqiang 林宏伟 ZHANG Hongchao SUN Mutian XU Xiuchen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期473-486,共14页
Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou... Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force. 展开更多
关键词 ultra-thin asphalt overlay pavement distress discrete element method meso-mechanics damage mechanism
下载PDF
An Innovative Coupled Common-Node Discrete Element Method-Smoothed Particle Hydrodynamics Model Developed with LS-DYNA and Its Applications
2
作者 SHEN Zhong-xiang WANG Wen-qing +2 位作者 XU Cheng-yue LUO Jia-xin LIU Ren-wei 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期467-482,共16页
In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SP... In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure. 展开更多
关键词 common-node dem-SPH fluid-structure interaction discrete element method smoothed particle hydrodynamics
下载PDF
Investigation of the block toppling evolution of a layered model slope by centrifuge test and discrete element modeling
3
作者 Leilei Jin Hongkai Dong +3 位作者 Fei Ye Yufeng Wei Jianfeng Liu Changkui Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期112-122,共11页
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl... Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe. 展开更多
关键词 Block toppling CENTRIFUGE Anti-dip slope Failure mechanism discrete element method
下载PDF
Discrete Element Modelling of Damage Evolution of Concrete Considering Meso-Structure of ITZ
4
作者 Weiliang Gao Shixu Jia +1 位作者 Tingting Zhao Zhiyong Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3495-3511,共17页
The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element metho... The mechanical properties of interfacial transition zones(ITZs)have traditionally been simplified by reducing the stiffness of cement in previous simulation methods.A novel approach based on the discrete element method(DEM)has been developed for modeling concrete.This new approach efficiently simulates the meso-structure of ITZs,accurately capturing their heterogeneous properties.Validation against established uniaxial compression experiments confirms the precision of thismodel.The proposedmodel canmodel the process of damage evolution containing cracks initiation,propagation and penetration.Under increasing loads,cracks within ITZs progressively accumulate,culminating in macroscopic fractures that traverse themortarmatrix,forming the complex,serpentine path of cracks.This study reveals four distinct displacement patterns:tensile compliant,tensile opposite,mixed tensile-shear,and shear opposite patterns,each indicative of different stages in concrete’s damage evolution.The widening angle of these patterns delineates the progression of cracks,with the tensile compliant pattern signaling the initial crack appearance and the shear opposite pattern indicating the concrete model’s ultimate failure. 展开更多
关键词 discrete element method damage evolution interfacial transition zone meso-structure model
下载PDF
Correlations between mineral composition and mechanical properties of granite using digital image processing and discrete element method 被引量:2
5
作者 Changdi He Brijes Mishra +3 位作者 Qingwen Shi Yun Zhao Dajun Lin Xiao Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期949-962,共14页
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(... This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests. 展开更多
关键词 GRANITE Digital image processing discrete element method Mineral composition Mechanical properties
下载PDF
Capability of discrete element method to investigate the macro-micro mechanical behaviours of granular soils considering different stress conditions and morphological gene mutation
6
作者 Wei Xiong Jianfeng Wang Zhuang Cheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2731-2745,共15页
Discrete element method(DEM)has been widely utilised to model the mechanical behaviours of granular materials.However,with simplified particle morphology or rheology-based rolling resistance models,DEM failed to descr... Discrete element method(DEM)has been widely utilised to model the mechanical behaviours of granular materials.However,with simplified particle morphology or rheology-based rolling resistance models,DEM failed to describe some responses,such as the particle kinematics at the grain-scale and the principal stress ratio against axial strain at the macro-scale.This paper adopts a computed tomography(CT)-based DEM technique,including particle morphology data acquisition from micro-CT(mCT),spherical harmonic-based principal component analysis(SH-PCA)-based particle morphology reconstruction and DEM simulations,to investigate the capability of DEM with realistic particle morphology for modelling granular soils’micro-macro mechanical responses with a consideration of the initial packing state,the morphological gene mutation degree,and the confining stress condition.It is found that DEM with realistic particle morphology can reasonably reproduce granular materials’micro-macro mechanical behaviours,including the deviatoric stressevolumetric straineaxial strain response,critical state behaviour,particle kinematics,and shear band evolution.Meanwhile,the role of multiscale particle morphology in granular soils depends on the initial packing state and the confining stress condition.For the same granular soils,rougher particle surfaces with a denser initial packing state and a higher confining stress condition result in a higher degree of shear strain localisation. 展开更多
关键词 discrete element method(dem) Spherical harmonic-based principal component analysis(SH-PCA) Particle morphology Granular so
下载PDF
Effect of heterogeneity on mechanical and micro-seismic behaviors of sandstone subjected to multi-level cyclic loading: A discrete element method investigation
7
作者 Zhengyang Song Zhen Yang +3 位作者 Min Zhang Fei Wang Martin Herbst Heinz Konietzky 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2556-2581,共26页
In numerical simulation of the mechanical responses and acoustic emission(AE)characteristics of rocks under cyclic loading,the impacts of compositional heterogeneities of mineral grains have barely been considered.Thi... In numerical simulation of the mechanical responses and acoustic emission(AE)characteristics of rocks under cyclic loading,the impacts of compositional heterogeneities of mineral grains have barely been considered.This will lead to a poor reproduction of rock’s behaviors in terms of stress-strain relationship and micro-seismic characteristics in numerical simulation.This work aims to analyze and reveal the impact of parameter heterogeneity on the rock’s fatigue and micro-seismic properties based on PFC3D.Two distribution patterns(uniform and Weibull distributions),are implemented to assign four critical parameters(i.e.tensile strength,cohesion,parallel bond stiffness and linear stiffness)for 32 sets of numerical schemes.The results show that the models with high heterogeneity of tensile strength and cohesion can better reproduce the stress-strain relationship as well as the patterns of cumulative AE counts and energy magnitude.The evolution of the proportion of three-level AE events in the laboratory test is consistent with the numerical results when the highly heterogeneous tensile strength and cohesion are distributed.The numerical results can provide practical guidance to the PFC-based modeling of rock heterogeneity when exposed to multi-level cyclic loading and AE monitoring. 展开更多
关键词 discrete element method(dem) HETEROGENEITY Weibull distribution PFC3D Cyclic loading Acoustic emission(AE)
下载PDF
Computational fluid dynamics-discrete element method simulation of stirred tank reactor for graphene production
8
作者 Shuaishuai Zhou Jing Li +5 位作者 Kaixiang Pang Chunxi Lu Feng Zhu Congzhen Qiao Yajie Tian Jingwei Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期196-207,共12页
Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the productio... Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process. 展开更多
关键词 Computational fluid dynamics discrete element method Stirred tank LPE process Liquid-particle interactions
下载PDF
A Study on the Physical Properties of Banana Straw Based on the Discrete Element Method
9
作者 Sen Zhang Jie Jiang Yuedong Wang 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1159-1172,共14页
To improve the application of discrete element models(DEM)to the design of agricultural crushers,in this study a new highly accurate model is elaborated.The model takes into account the fiber structure,porous nature o... To improve the application of discrete element models(DEM)to the design of agricultural crushers,in this study a new highly accurate model is elaborated.The model takes into account the fiber structure,porous nature of the material and the leaf sheath coating structure.Dedicated experimental tests are conducted to determine the required“intrinsic”and basic contact parameters of the considered banana straw materials.A large number of bonding parameters are examined in relation to the particle aggregation model in order to characterize different actual banana straws.Using the particle surface energy contact model,the viscosity characteristics of the crushed material are determined together with the related stacking angle(considered as the main response factor).Through single factor experiment analysis,it is found that when the surface energy is 0.9 J·m-2,the relative error between simulations and physical experiments is 5.288%. 展开更多
关键词 Banana straw discrete element model contact model surface energy dem
下载PDF
Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-μDFN approach 被引量:6
10
作者 Pooya Hamdi Doug Stead Davide Elmo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期609-625,共17页
Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed ... Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stressinducedmicrocracking increases with depth and in-situ stress. Laboratory results indicate that thephysical properties of rocks such as strength, deformability, P-wave velocity and permeability areinfluenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks usingthe proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracksrequired to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnetgranite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the mechanicalbehavior and resultant fracture pattern. An increase in the microcrack intensity leads to areduction in the strength of the sample and changes the character of the rock strength envelope. Spallingand axial splitting dominate the failure mode at low confinement while shear failure is the dominantfailure mode at high confinement. Numerical results from simulated compression tests show thatmicrocracking reduces the cohesive component of strength alone, and the frictional strength componentremains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced bythe presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. Theimportance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and itseffects on the mechanisms leading to spalling damage near an underground opening are also discussed. 展开更多
关键词 Finite-discrete element method(Fdem) Micro discrete fracture network(μDFN) Brittle fracture
下载PDF
MatDEM-fast matrix computing of the discrete element method 被引量:5
11
作者 Chun Liu Hui Liu Hongyong Zhang 《Earthquake Research Advances》 CSCD 2021年第3期1-7,共7页
Discrete element method can effectively simulate the discontinuity,inhomogeneity and large deformation and failure of rock and soil.Based on the innovative matrix computing of the discrete element method,the highperfo... Discrete element method can effectively simulate the discontinuity,inhomogeneity and large deformation and failure of rock and soil.Based on the innovative matrix computing of the discrete element method,the highperformance discrete element software MatDEM may handle millions of elements in one computer,and enables the discrete element simulation at the engineering scale.It supports heat calculation,multi-field and fluidsolid coupling numerical simulations.Furthermore,the software integrates pre-processing,solver,postprocessing,and powerful secondary development,allowing recompiling new discrete element software.The basic principles of the DEM,the implement and development of the MatDEM software,and its applications are introduced in this paper.The software and sample source code are available online(http://matdem.com). 展开更多
关键词 discrete element method HIGH-PERFORMANCE Matdem Matrix computing
下载PDF
基于Rocky DEM的松散润叶筒内抄板作用的模拟与优化
12
作者 潘凡达 沈凯 +5 位作者 樊虎 李旭 胡世豪 蒋明洋 金浩 邹剑峰 《化学反应工程与工艺》 CAS 2024年第1期66-76,共11页
为深入研究松散润叶筒内叶片在抄板上的掉落过程,提升叶片的耐加工性,利用三维建模软件建立松散润叶筒三维模型,通过Rocky 2021 R2离散元仿真软件创建薄片柔性叶片进行数值模拟,对叶片在松散润叶筒内抄板上的运动进行可视化计算。根据... 为深入研究松散润叶筒内叶片在抄板上的掉落过程,提升叶片的耐加工性,利用三维建模软件建立松散润叶筒三维模型,通过Rocky 2021 R2离散元仿真软件创建薄片柔性叶片进行数值模拟,对叶片在松散润叶筒内抄板上的运动进行可视化计算。根据抄板上叶片的持料量百分比曲线和落料速率曲线,将叶片的掉落过程分为两个阶段。结果表明:片状颗粒的受力区别于刚性球体间的点对点接触受力,叶片形状不可忽略;松散润叶筒转速为15 r/min时,叶片在筒体底部分布较少,筒体上半部分分布较多;抄板安装角度为80°时,板上持料量增多,抄板倾角较合理,增温增湿效果最优;松散润叶筒倾角对叶片在抄板上掉落的轴向速度影响显著。通过仿真得出叶片在抄板上掉落过程的优化参数,有助于松散润叶过程调控,指导实际工业生产。 展开更多
关键词 片状叶片 离散元法 Rocky离散元仿真软件 抄板 数值模拟
下载PDF
基于DEM-FDM耦合的过渡段膨胀诱发钢轨上拱研究
13
作者 汪优 高天涯 +4 位作者 闫斌 王瑞 陈子娟 张文旭 程建军 《铁道工程学报》 EI CSCD 北大核心 2024年第1期7-12,共6页
研究目的:为分析涵洞过渡段地基膨胀引起的钢轨上拱响应,基于现场测试、室内膨胀试验数据,开展DEM-FDM耦合数值模拟,分析某涵洞附近路基土在膨胀范围为16 m,膨胀中心距离涵洞中心分别为0 m、5 m、10 m这三种工况下,不同膨胀率时基床填... 研究目的:为分析涵洞过渡段地基膨胀引起的钢轨上拱响应,基于现场测试、室内膨胀试验数据,开展DEM-FDM耦合数值模拟,分析某涵洞附近路基土在膨胀范围为16 m,膨胀中心距离涵洞中心分别为0 m、5 m、10 m这三种工况下,不同膨胀率时基床填料的运动规律及钢轨的上拱响应。研究结论:(1)涵洞对于钢轨上拱位移的传递存在阻断作用,但会增大钢轨上拱的峰值,原位膨胀率下工况二的钢轨上拱峰值达到46 mm,当路基膨胀率为0.3%时钢轨上拱位移量达到无砟轨道钢轨可调节临界值(4mm);(2)过渡段钢轨上拱处同时产生轴向应力集中,其中原位膨胀率下工况二轴向应力峰值达到14.4 MPa;(3)对于膨胀区域位于涵洞下方的工况,钢轨轴向应力呈现出来的分布规律为钢轨上拱拱顶处为主拉应力状态,拱脚处为主压应力状态,因此一共包括三个压应力峰值点以及两个拉应力峰值点;(4)本文研究可为高铁涵洞过渡段路基膨胀病害解决方案的确定提供理论依据。 展开更多
关键词 过渡段 路基膨胀 无砟轨道 钢轨上拱 有限差分 离散元
下载PDF
Assessment of strain bursting in deep tunnelling by using the finite-discrete element method 被引量:8
14
作者 Ioannis Vazaios Mark S.Diederichs Nicholas Vlachopoulos 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期12-37,共26页
Rockbursting in deep tunnelling is a complex phenomenon posing significant challenges both at the design and construction stages of an underground excavation within hard rock masses and under high in situ stresses. Wh... Rockbursting in deep tunnelling is a complex phenomenon posing significant challenges both at the design and construction stages of an underground excavation within hard rock masses and under high in situ stresses. While local experience, field monitoring, and informed data-rich analysis are some of the tools commonly used to manage the hazards and the associated risks, advanced numerical techniques based on discontinuum modelling have also shown potential in assisting in the assessment of rockbursting. In this study, the hybrid finite-discrete element method(FDEM) is employed to investigate the failure and fracturing processes, and the mechanisms of energy storage and rapid release resulting in bursting, as well as to assess its utility as part of the design process of underground excavations.Following the calibration of the numerical model to simulate a deep excavation in a hard, massive rock mass, discrete fracture network(DFN) geometries are integrated into the model in order to examine the impact of rock structure on rockbursting under high in situ stresses. The obtained analysis results not only highlight the importance of explicitly simulating pre-existing joints within the model, as they affect the mobilised failure mechanisms and the intensity of strain bursting phenomena, but also show how the employed joint network geometry, the field stress conditions, and their interaction influence the extent and depth of the excavation induced damage. Furthermore, a rigorous analysis of the mass and velocity of the ejected rock blocks and comparison of the obtained data with well-established semi-empirical approaches demonstrate the potential of the method to provide realistic estimates of the kinetic energy released during bursting for determining the energy support demand. 展开更多
关键词 ROCKBURST Finite-discrete element method(Fdem) Deep TUNNELLING Hard rock EXCAVATIONS Brittle fracturing discrete fracture network(DFN)
下载PDF
Influence of heterogeneity on rock strength and stiffness using discrete element method and parallel bond model 被引量:7
15
作者 Spyridon Liakas Catherine O’Sullivan Charalampos Saroglou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期575-584,共10页
The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are ... The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens. 展开更多
关键词 discrete element method(dem) Heterogeneous rocks Strength and stiffness Parallel bond model
下载PDF
THE APPLICATION OF DISCRETE ELEMENT METHOD IN SOLVING THREE-DIMENTIONAL IMPACT DYNAMICS PROBLEMS 被引量:7
16
作者 Liu Kaixin Gao Lingtian (Department of Mechanics and Engineering Science,Peking University,Beijing 100871,China) 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第3期256-261,共6页
A three-dimensional discrete element model of the connective type is presented. Moreover,a three-dimensional numerical analysis code,which can carry out the transitional pro- cess from connective model(for continuum)t... A three-dimensional discrete element model of the connective type is presented. Moreover,a three-dimensional numerical analysis code,which can carry out the transitional pro- cess from connective model(for continuum)to contact model(for non-continuum),is developed for simulating the mechanical process from continuum to non-continuum.The wave propagation process in a concrete block(as continuum)made of cement grout under impact loading is numer- ically simulated with this code.By comparing its numerical results with those by LS-DYNA,the calculation accuracy of the model and algorithm is proved.Furthermore,the failure process of the concrete block under quasi-static loading is demonstrated,showing the basic dynamic tran- sitional process from continuum to non-continuum.The results of calculation can be displayed by animation.The damage modes are similar to the experimental results.The two numerical examples above prove that our model and its code are powerful and efficient in simulating the dynamic failure problems accompanying the transition from continuum to non-continuum.It also shows that the discrete element method(DEM)will have broad prospects for development and application. 展开更多
关键词 discrete element method three-dimensional model IMPACT stress wave dynamic failure
下载PDF
Understanding roof deformation mechanics and parametric sensitivities of coal mine entries using the discrete element method 被引量:11
17
作者 Rami Abousleiman Gabriel Walton Sankhaneel Sinha 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期123-129,共7页
Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that disc... Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that discontinuous,layered roof materials have some self-supporting capacity.This research is a preliminary step towards understanding these mechanics in coal-measure rocks.Although others have considered broad conceptual models and simplified analogs for mine roof behavior,this study presents a unique numerical model that more completely represents in-situ roof conditions.The discrete element method(DEM)is utilized to conduct a parametric analysis considering a range of in-situ stress ratios,material properties,and joint networks to determine the parameters controlling the stability of single-entries modeled in two-dimensions.Model results are compared to empirical observations of roof-support effectiveness(ARBS)in the context of the coal mine roof rating(CMRR)system.Results such as immediate roof displacement,overall stability,and statistical relationships between model parameters and outcomes are presented herein.Potential practical applications of this line of research include:(1)roof-support optimization for a range of coal-measure rocks,(2)establishment of a relationship between roof stability and pillar stress,and(3)determination of which parameters are most critical to roof stability and therefore require concentrated evaluation. 展开更多
关键词 Numerical modeling discrete element method Coal mine ROOF rating ANALYSIS of ROOF bolt systems Sensitivity ANALYSIS Strain SOFTENING ubiquitous joints discrete fracture network
下载PDF
Study on the particle breakage of ballast based on a GPU accelerated discrete element method 被引量:4
18
作者 Guang-Yu Liu Wen-Jie Xu +1 位作者 Qi-Cheng Sun Nicolin Govender 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第2期461-471,共11页
Breakage of particles will have greatly influence on mechanical behavior of granular material(GM)under external loads,such as ballast,rockfill and sand.The discrete element method(DEM)is one of the most popular method... Breakage of particles will have greatly influence on mechanical behavior of granular material(GM)under external loads,such as ballast,rockfill and sand.The discrete element method(DEM)is one of the most popular methods for simulating GM as each particle is represented on its own.To study breakage mechanism of particle breakage,a cohesive contact mode is developed based on the GPU accelerated DEM code-Blaze-DEM.A database of the 3D geometry model of rock blocks is established based on the 3D scanning method.And an agglomerate describing the rock block with a series of non-overlapping spherical particles is used to build the DEM numerical model of a railway ballast sample,which is used to the DEM oedometric test to study the particles’breakage characteristics of the sample under external load.Furthermore,to obtain the meso-mechanical parameters used in DEM,a black-analysis method is used based on the laboratory tests of the rock sample.Based on the DEM numerical tests,the particle breakage process and mechanisms of the railway ballast are studied.All results show that the developed code can better used for large scale simulation of the particle breakage analysis of granular material. 展开更多
关键词 discrete element method(dem) Particle breakage Graphical processing unit(GPU) Railway ballast Granular material(GM)
下载PDF
Predicting the Dynamic Behavior of Asphalt Concrete Using Three-dimensional Discrete Element Method 被引量:4
19
作者 陈俊 PAN Tongyan +2 位作者 CHEN Jingya HUANG Xiaoming LU Yang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第2期382-388,共7页
A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructe... A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructed employing a user-defined computer program developed using the "Fish" language in PFC3D. Important microstructural features of AC were modeled, including aggregate gradation, air voids and mastic. The irregular shape of aggregate particle was modeled using a clump of spheres. The developed model was validated through comparing with experimental measurements and then used to simulate the cyclic uniaxial compression test, based on which the dynamic modulus and phase angle were calculated from the output stress- strain relationship. The effects of air void content, aggregate stiffness and volumetric fraction on AC modulus were further investigated. The experimental results show that the 3D DEM model is able to accurately predict both dynamic modulus and phase angle of AC across a range of temperature and loading frequencies. The user- defined 3D model also demonstrated significant improvement over the general existing two-dimensional models. 展开更多
关键词 asphalt concrete dynamic modulus MICROMECHANICS discrete element method three-dimensional model uniaxial compression test
下载PDF
Dynamic Analysis of Deep-Ocean Mining Pipe System by Discrete Element Method 被引量:5
20
作者 李艳 刘少军 李力 《China Ocean Engineering》 SCIE EI 2007年第1期175-185,共11页
The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system. A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system, including the ... The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system. A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system, including the lift pipe, pump, buffer and flexible hose. By the discrete element method, the pipe is divided into some rigid elements that are linked by flexible connectors. First, two examples representing static analysis and dynamic analysis respectively are given to show that the DEM model is feasible. Then the three-dimensional DEM model is used for dynamic analysis of the mining pipe system. The dynamic motions of the entire mining pipe system under different work conditions are discussed. Some suggestions are made for the actual operation of deep-ocean mining systems. 展开更多
关键词 discrete element method deep-ocean mining pipe system dynamic analysis
下载PDF
上一页 1 2 185 下一页 到第
使用帮助 返回顶部