为研究采煤机螺旋滚筒在多种赋存条件下的振动特性,以MG2×55/250–BWD型薄煤层采煤机为工程对象,优化煤岩接触模型,建立与实际赋存条件相似的多种不同截割工况下煤壁离散元模型。结合DEM–MFBD(Discrete Element Method-Multi Flex...为研究采煤机螺旋滚筒在多种赋存条件下的振动特性,以MG2×55/250–BWD型薄煤层采煤机为工程对象,优化煤岩接触模型,建立与实际赋存条件相似的多种不同截割工况下煤壁离散元模型。结合DEM–MFBD(Discrete Element Method-Multi Flexible Body Dynamics)双向耦合数值模拟方法搭建采煤机截割部刚柔耦合虚拟样机模型与煤壁离散元模型的双向耦合试验平台,通过仿真试验得到不同煤岩工况下螺旋滚筒的截割过程,并分别对其振动特性的变化规律展开分析。研究结果表明:螺旋滚筒在截割过程中,三向均出现不同程度的振动,其中截割阻力方向振动加速度最大,牵引阻力方向振动加速度次之,侧向力方向振动加速度最小。随着模型中夹矸硬度以及层数比例的增加,截割过程中螺旋滚筒的振动强度不断加剧,最大振动加速度有效值的差值达到4403.149 mm/s^(2)。利用短时傅里叶变换将一维振动信号转化为二维时频谱图像,得到不同煤岩工况下振动信息变化特征在时频域中完成较好保留,其时频谱图像的特征样本效果优于各工况的时域一维信号曲线,主频能量位置、范围大小、特征团形状等信息具有明显区别,即使遇到夹矸层数不同,夹矸坚固性系数也存在差异的复杂工况,其时频谱图像中能量特征的分布形式也具有显著差别。通过振动模态分析发现,随着煤壁中含有夹矸硬度的增加,各部位的变形量均发生变化,其中截齿部位变化最为强烈。基于相似理论搭建采煤机振动信号测试试验平台,对不同煤岩工况条件下螺旋滚筒截割过程进行了测试研究,通过追踪螺旋滚筒的振动状态,发现其振动变化规律与双向耦合数值模拟一致。试验测试得到DEM–MFBD数值模拟方法获取的螺旋滚筒振动加速度有效值与依据相似比反推的试验数据之间的误差小于DEM离散元数值模拟方法与实验数据之间的误差,验证了DEM–MFBD数值模拟方法的准确性。研究结果对于提升螺旋滚筒工作可靠性具有重要意义,同时也为采煤机智能化开采的煤岩截割状态识别系统搭建过程中数据信息的获取提供了一种新的方法。展开更多
文摘为研究采煤机螺旋滚筒在多种赋存条件下的振动特性,以MG2×55/250–BWD型薄煤层采煤机为工程对象,优化煤岩接触模型,建立与实际赋存条件相似的多种不同截割工况下煤壁离散元模型。结合DEM–MFBD(Discrete Element Method-Multi Flexible Body Dynamics)双向耦合数值模拟方法搭建采煤机截割部刚柔耦合虚拟样机模型与煤壁离散元模型的双向耦合试验平台,通过仿真试验得到不同煤岩工况下螺旋滚筒的截割过程,并分别对其振动特性的变化规律展开分析。研究结果表明:螺旋滚筒在截割过程中,三向均出现不同程度的振动,其中截割阻力方向振动加速度最大,牵引阻力方向振动加速度次之,侧向力方向振动加速度最小。随着模型中夹矸硬度以及层数比例的增加,截割过程中螺旋滚筒的振动强度不断加剧,最大振动加速度有效值的差值达到4403.149 mm/s^(2)。利用短时傅里叶变换将一维振动信号转化为二维时频谱图像,得到不同煤岩工况下振动信息变化特征在时频域中完成较好保留,其时频谱图像的特征样本效果优于各工况的时域一维信号曲线,主频能量位置、范围大小、特征团形状等信息具有明显区别,即使遇到夹矸层数不同,夹矸坚固性系数也存在差异的复杂工况,其时频谱图像中能量特征的分布形式也具有显著差别。通过振动模态分析发现,随着煤壁中含有夹矸硬度的增加,各部位的变形量均发生变化,其中截齿部位变化最为强烈。基于相似理论搭建采煤机振动信号测试试验平台,对不同煤岩工况条件下螺旋滚筒截割过程进行了测试研究,通过追踪螺旋滚筒的振动状态,发现其振动变化规律与双向耦合数值模拟一致。试验测试得到DEM–MFBD数值模拟方法获取的螺旋滚筒振动加速度有效值与依据相似比反推的试验数据之间的误差小于DEM离散元数值模拟方法与实验数据之间的误差,验证了DEM–MFBD数值模拟方法的准确性。研究结果对于提升螺旋滚筒工作可靠性具有重要意义,同时也为采煤机智能化开采的煤岩截割状态识别系统搭建过程中数据信息的获取提供了一种新的方法。