期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Patient-Specific Echo-Based Fluid-Structure Interaction Modeling Study of Blood Flow in the Left Ventricle with Infarction and Hypertension 被引量:2
1
作者 Longling Fan Jing Yao +2 位作者 Chun Yang Di Xu Dalin Tang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第2期221-237,共17页
Understanding cardiac blood flow behaviors is of importance for cardiovascular research and clinical assessment of ventricle functions.Patient-specific Echo-based left ventricle(LV)fluid-structure interaction(FSI)mode... Understanding cardiac blood flow behaviors is of importance for cardiovascular research and clinical assessment of ventricle functions.Patient-specific Echo-based left ventricle(LV)fluid-structure interaction(FSI)models were introduced to perform ventricle mechanical analysis,investigate flow behaviors,and evaluate the impact of myocardial infarction(MI)and hypertension on blood flow in the LV.Echo image data were acquired from 3 patients with consent obtained:one healthy volunteer(P1),one hypertension patient(P2),and one patient who had an inferior and posterior myocardial infarction(P3).The nonlinear Mooney-Rivlin model was used for ventricle tissue with material parameter values chosen to match echo-measure LV volume data.Using the healthy case as baseline,LV with MI had lower peak flow velocity(30%lower at beginejection)and hypertension LV had higher peak flow velocity(16%higher at begin-filling).The vortex area(defined as the area with vorticity>0)for P3 was 19%smaller than that of P1.The vortex area for P2 was 12%smaller than that of P1.At peak of filling,the maximum flow shear stress(FSS)for P2 and P3 were 390%higher and 63%lower than that of P1,respectively.Meanwhile,LV stress and strain of P2 were 41%and 15%higher than those of P1,respectively.LV stress and strain of P3 were 36%and 42%lower than those of P1,respectively.In conclusion,FSI models could provide both flow and structural stress/strain information which would serve as the base for further cardiovascular investigations related to disease initiation,progression,and treatment strategy selections.Large-scale studies are needed to validate our findings. 展开更多
关键词 fluid-structure interaction model VENTRICLE flow fluid dynamic VENTRICLE material properties VENTRICLE mechanics
下载PDF
Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling 被引量:3
2
作者 Xumin GUO Chunliang XIAO +3 位作者 Hui MA Hui LI Xufang ZHANG Bangchun WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第8期1269-1288,共20页
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ... The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering. 展开更多
关键词 parallel liquid-filled pipe(PLFP) dynamic analysis improved frequency modeling and solution fluid-structure interaction(FSI) structure coupling
下载PDF
Model Studies of Fluid-Structure Interaction Problems
3
作者 X.Sheldon Wang Ye Yang Tao Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第4期5-34,共30页
In this work,we employ fluid-structure interaction(FSI)systems with immersed flexible structures with or without free surfaces to explore both Singular Value Decomposition(SVD)-based model reduction methods and mode s... In this work,we employ fluid-structure interaction(FSI)systems with immersed flexible structures with or without free surfaces to explore both Singular Value Decomposition(SVD)-based model reduction methods and mode superposition methods.For acoustoelastic FSI systems,we adopt a three-field mixed finite element formulation with displacement,pressure,and vorticity moment unknowns to effectively enforce the irrotationality constraint.We also propose in this paper a new Inf-Sup test based on the lowest non-zero singular value of the coupling matrix for the selection of reliable sets of finite element discretizations for displacement and pressure as well as vorticity moment.Our numerical examples demonstrate that mixed finite element formulations can be effectively used to predict resonance frequencies of fully coupled FSI systems within different ranges of respective physical motions,namely,acoustic,structural,and slosh motions,without the contamination of spurious(non-physical)modes with nonzero frequencies.Our numerical results also confirm that SVD-based model reduction methods can be effectively used to reconstruct from a few snapshots of transient solutions the dominant principal components with moderate level of signal to noise ratio,which may eventually open doors for simulation of long-term behaviors of both linear and nonlinear FSI systems. 展开更多
关键词 model reduction fluid-structure interaction MIXED FINITE ELEMENT SINGULAR VALUE DECOMPOSITION acoustic
下载PDF
Fully Coupled Fluid-Structure Interaction Model Based on Distributed Lagrange Multiplier/Fictitious Domain Method
4
作者 及春宁 董晓强 +1 位作者 赵冲久 王元战 《China Ocean Engineering》 SCIE EI 2007年第3期439-450,共12页
This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the... This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the rigid structure is taken as "fictitious" fluid with zero strain rate. Both fluid and structure are described by velocity and pressure. The whole domain, including fluid region and structure region, is modeled by the incompressible Navier-Stokes equations which are discretized with fixed Eulerian mesh. However, to keep the structure' s rigid body shape and behavior, a rigid body constraint is enforced on the "fictitious" fluid domain by use of the Distributed Lagrange Multipher/Fictitious Domain (DLM/ FD) method which is originally introduced to solve particulate flow problems by Glowinski et al. For the verification of the model presented herein, a 2D numerical wave tank is established to simulate small amplitude wave propagations, and then numerical results are compared with analytical solutions. Finally, a 2D example of fluid-structure interaction under wave dynamic forces provides convincing evidences for the method excellent solution quality and fidelity. 展开更多
关键词 fluid-structure interaction fully coupled model distributed Lagrange multiplier/fictitious domain method numerical wave tank
下载PDF
A Fluid-Structure Interaction Simulation of Coal and Gas Outbursts Based on the Interaction between the Gas Pressure and Deformation of a Coal-Rock Mass
5
作者 Lin Fang Mengjun Wu +3 位作者 Bin Wu Honglin Li Chenhao He Fan Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1649-1668,共20页
Based on the theories of the gas seepage in coal seams and the deformation of the coal-rock medium,the gas seepage field in coal-rock mass is coupled with the deformation field of the coal-rock mass to establish a flu... Based on the theories of the gas seepage in coal seams and the deformation of the coal-rock medium,the gas seepage field in coal-rock mass is coupled with the deformation field of the coal-rock mass to establish a fluidstructure interaction model for the interaction between coal gas and coal-rock masses.The outburst process in coal-rock masses under the joint action of gas pressure and crustal stress is simulated using the material point method.The simulation results show the changes in gas pressure,velocity distribution,maximum principal stress distribution,and damage distribution during the process of the coal and gas outburst,as well as themovement and accumulation of coal-rock masses after the occurrence of the outburst.It was found that the gas pressure gradient was greatest at theworking face after the occurrence of the outburst,the gas pressures and pressure gradients at each location within the coal seamgradually decreased with time,and the damage distribution was essentially the same as the minimum principal stress distribution.The simulation further revealed that the outburst first occurred in themiddle of the tunnel excavation face and that the speed at which particles of coal mass were ejected was highest at the center and decreased toward the upper and lower sides.The study provides a scientific basis for enhancing our understanding of the mechanism behind coal and gas outbursts,as well as their prevention and control. 展开更多
关键词 Coal and gas outburst fluid-structure interaction model material point method numerical simulation
下载PDF
An Innovative Coupled Common-Node Discrete Element Method-Smoothed Particle Hydrodynamics Model Developed with LS-DYNA and Its Applications
6
作者 SHEN Zhong-xiang WANG Wen-qing +2 位作者 XU Cheng-yue LUO Jia-xin LIU Ren-wei 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期467-482,共16页
In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SP... In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure. 展开更多
关键词 common-node dem-sph fluid-structure interaction discrete element method smoothed particle hydrodynamics
下载PDF
Fluid-structure interaction simulation for multi-body flexible morphing structures
7
作者 Wenzhi GUO Yongtao SHUI +1 位作者 Lu NIE Gang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期137-147,共11页
The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flex... The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flexible wings under passive actuation.However,the unsteady aerodynamic characteristics with the fluid-structure interaction effects in the multi-body active actuation process of morphing airfoil deserve further investigation.In this paper,a fluid-structure coupled simulation method for multi-body flexible morphing airfoil with active actuation subsystem was investigated,and the aerodynamic characteristics during deformation were compared with different skin flexibility,flow field environment,actuation mode and actuation time.The numerical results show that for the steady aerodynamic,the skin flexibility can improve the stability efficiency.In the unsteady process,the change trend of the transient lift coefficient and pitching moment are consistent with those of the active drive characteristics,while the instantaneous lift-drag ratio coefficient is greatly affected by the driving mode and can be improved by increasing the driving duration. 展开更多
关键词 fluid-structure interaction Multi-body dynamics modeling Flexible structures AERODYNAMICS Morphing wings
原文传递
Numerical Investigation on Dynamic Response Characteristics of Fluid-Structure Interaction of Gas-Liquid Two-Phase Flow in Horizontal Pipe
8
作者 王志伟 何炎平 +4 位作者 李铭志 仇明 黄超 刘亚东 王梓 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期237-244,共8页
Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulat... Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions. 展开更多
关键词 gas-liquid two-phase flow volume of fluid model fluid-structure interaction(FSI) dynamic response characteristics
原文传递
Full Dynamic Model for Liquid Sloshing Simulation in Cylindrical Tank Shape
9
作者 Omar Noui Mohamed Bouazara Marc J. Richard 《World Journal of Mechanics》 2024年第4期55-72,共18页
This study presents a comprehensive full dynamic model designed for simulating liquid sloshing behavior within cylindrical tank structures. The model employs a discretization approach, representing the liquid as a net... This study presents a comprehensive full dynamic model designed for simulating liquid sloshing behavior within cylindrical tank structures. The model employs a discretization approach, representing the liquid as a network of interconnected spring-damper-mass systems. Key aspects include the adaptation of liquid discretization techniques to cylindrical lateral cross-sections and the calculation of stiffness and damping coefficients. External forces, simulating various vehicle maneuvers, are also integrated into the model. The resulting system of equations is solved using Maple Software with the Runge-Kutta-Fehlberg method. This model enables accurate prediction of liquid displacement and pressure forces, offering valuable insights for tank design and fluid dynamics applications. Ongoing refinement aims to broaden its applicability across different liquid types and tank geometries. 展开更多
关键词 fluid-structure interaction Equivalent Mechanical model Liquid Discretization Spring-Mass model Spring-Mass Network Liquid Simulation
下载PDF
AN APPROACH TO MATHEMATICAL MODELING OF PIPING SYSTEM WITH FLUID-STRUCTURE INTERACTION 被引量:1
10
作者 Zhuge Qi Cai Yi-gang Yang Shi-chao Sheng Jing-chao Zhejiang University,Hangzhou,P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1989年第4期11-19,共9页
The present paper studies the dynamic pehaviour of a complex piping system containing internal fluid flow.A generalized complex modal decomposition method is proposed for modeling the piping structure.A characteristic... The present paper studies the dynamic pehaviour of a complex piping system containing internal fluid flow.A generalized complex modal decomposition method is proposed for modeling the piping structure.A characteristic impedance transfer matrix of piping flow with a frequency-dependent friction is employed for describing the model of fluid flow,which is coupled to the structural model by means of an approach similar to that used in the structural modal synthesis.The coupled model is practicable for the detecting,monitoring,controlling or predicting of piping vibrations,and for the studying of fluid dynamic characteristics under the influence of structural vibration,also for the diagnosticating of the piping system. 展开更多
关键词 AN APPROACH TO MATHEMATICAL modelING OF PIPING SYSTEM WITH fluid-structure interaction
原文传递
Dynamic Response of Floating Body Subjected to Underwater Explosion Bubble and Generated Waves with 2D Numerical Model 被引量:1
11
作者 Zhaoli Tian Yunlong Liu +2 位作者 Shiping Wang A Man Zhang Youwei Kang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第2期397-423,共27页
The low frequency load of an underwater explosion bubble and the generated waves can cause significant rigid motion of a ship that threaten its stability.In order to study the fluid-structure interaction qualitatively... The low frequency load of an underwater explosion bubble and the generated waves can cause significant rigid motion of a ship that threaten its stability.In order to study the fluid-structure interaction qualitatively,a two-dimensional underwater explosion bubble dynamics model,based on the potential flow theory,is established with a double-vortex model for the doubly connected bubble dynamics simulation,and the bubble shows similar dynamics to that in 3-dimensional domain.A fully nonlinear fluid-structure interaction model is established considering the rigid motion of the floating body using the mode-decomposition method.Convergence test of the model is implemented by simulating the free rolling motion of a floating body in still water.Through the simulation of the interaction of the underwater explosion bubble,the generated waves and the floating body based on the presented model,the influences of the buoyancy parameter and the distance parameter are discussed.It is found that the impact loads on floating body caused by underwater explosion bubble near the free surface can be divided into 3 components:bubble pulsation,jet impact,and slamming load of the generated waves,and the intensity of each component changes nonlinearly with the buoyance parameter.The bubble pulsation load decays with the increase in the horizontal distance.However,the impact load from the generated waves is not monotonous to distance.It increases with the distance within a particular distance threshold,but decays thereafter. 展开更多
关键词 UNDERWATER explosion BUBBLE DYNAMICS fluid-structure interaction double-vortex model WAVES GENERATED by UNDERWATER explosion.
下载PDF
Influence of wing flexibility on the aerodynamic performance of a tethered flapping bumblebee
12
作者 Hung Truong Thomas Engels +1 位作者 Dmitry Kolomenskiy Kai Schneider 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第6期382-389,共8页
The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight.In this study,a mass-spring system is used to model wing structural dynamics as a thin,f... The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight.In this study,a mass-spring system is used to model wing structural dynamics as a thin,flexible membrane supported by a network of veins.The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle.In order to analyze the effect of wing flexibility,the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible.The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations,allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee.Compared to the bumblebee model with rigid wings,the one with flexible wings flies more efficiently,characterized by a larger lift-to-power ratio. 展开更多
关键词 Insect flight Wing elasticity Mass-spring model fluid-structure interaction Spectral method Volume penalization method
下载PDF
Mechanical Behaviors of Submerged Floating Tunnel under Current Effect
13
作者 周晓军 高波 《Journal of Southwest Jiaotong University(English Edition)》 2007年第2期102-110,共9页
In order to provide a technical reference and guidance for the safety and stability analysis of the submerged floating tunnel (SFT) in the future, the mechanical behaviors of SFT under the action of water current wi... In order to provide a technical reference and guidance for the safety and stability analysis of the submerged floating tunnel (SFT) in the future, the mechanical behaviors of SFT under the action of water current with different velocities were studied by experiments on an SFT tube model made of rubber. Then, a numerical simulation on the coupling interaction between SFT and water current was conducted by finite element method (FEM). The comparison .between the results obtained from experiment and those derived from the numerical simulation shows that the experimental results approximately tally with the simulational ones. As a result, the relationships between water current velocities and the mechanical behaviors of tube, such as the annular and axial strains, internal forces ( axial force and bending moment), and deformations of the tube structure and the forces borne by the tension cables, were concluded. 展开更多
关键词 Submerged floating runnel Water current fluid-structure interaction model experiment Numerical simulation
下载PDF
Numerical Simulation of Airfoil Vibrations Induced by Turbulent Flow
14
作者 Miloslav Feistauer Jaromır Horacek Petr Svacek 《Communications in Computational Physics》 SCIE 2015年第1期146-188,共43页
The subject of the paper is the numerical simulation of the interaction of two-dimensional incompressible viscous flow and a vibrating airfoil with large amplitudes.The airfoil with three degrees of freedom performs r... The subject of the paper is the numerical simulation of the interaction of two-dimensional incompressible viscous flow and a vibrating airfoil with large amplitudes.The airfoil with three degrees of freedom performs rotation around an elastic axis,oscillations in the vertical direction and rotation of a flap.The numerical simulation consists of the finite element solution of the Reynolds averaged Navier-Stokes equations combined with Spalart-Allmaras or k−ω turbulence models,coupled with a system of nonlinear ordinary differential equations describing the airfoil motion with consideration of large amplitudes.The time-dependent computational domain and approximation on a moving grid are treated by the Arbitrary Lagrangian-Eulerian formulation of the flow equations.Due to large values of the involved Reynolds numbers an application of a suitable stabilization of the finite element discretization is employed.The developed method is used for the computation of flow-induced oscillations of the airfoil near the flutter instability,when the displacements of the airfoil are large,up to±40 degrees in rotation.The paper contains the comparison of the numerical results obtained by both turbulence models. 展开更多
关键词 fluid-structure interaction flow induced vibrations Reynolds averaged NavierStokes equations turbulence models finite element method coupling algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部