A tunable dual-wavelength fiber Bragg grating(FBG)laser based on a distributed feedback(DFB)laser injection is proposed and experimentally demonstrated.The wavelength spacing can be tuned by adjusting the operation te...A tunable dual-wavelength fiber Bragg grating(FBG)laser based on a distributed feedback(DFB)laser injection is proposed and experimentally demonstrated.The wavelength spacing can be tuned by adjusting the operation temperature of the DFB laser.When the DFB works at 25℃,a dual-wavelength simultaneous oscillation at 1 549.67 nm and1 553.44 nm with wavelength spacing of 3.77 nm is achieved.Our experimental results demonstrate the new concept of dual-wavelength lasing with a DFB laser injection and the technical feasibility.展开更多
The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then accor...The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then according to the injection current and priori tuning characteristics of the LDs, the emission wavelength is estimated in real time. The method is validated by using a 1.58 μm distributed feedback(DFB) LD. The absorption spectra of mixture gas of CO_2 and CO are measured by means of the thermal tuning gas sensing system. The center wavelength of each absorption line is compared with the data in HITRAN2012 database. The results show that the deviations are less than 5 pm. This method fully meets the needs of spectroscopic measurement, and can be applied to spectroscopy, optical communications and other fields.展开更多
基金supported by the National Natural Science Foundation of China(No.60777020)the Hubei Provincial Natural Science Fund of China(No.2008CDB317)the Innovation Project of Hubei Provincial Department of Education of China(No.104892013038)
文摘A tunable dual-wavelength fiber Bragg grating(FBG)laser based on a distributed feedback(DFB)laser injection is proposed and experimentally demonstrated.The wavelength spacing can be tuned by adjusting the operation temperature of the DFB laser.When the DFB works at 25℃,a dual-wavelength simultaneous oscillation at 1 549.67 nm and1 553.44 nm with wavelength spacing of 3.77 nm is achieved.Our experimental results demonstrate the new concept of dual-wavelength lasing with a DFB laser injection and the technical feasibility.
基金supported by the National Natural Science Foundation of China(No.61505142)the Tianjin Natural Science Foundation(No.16JCQNJC02100)
文摘The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then according to the injection current and priori tuning characteristics of the LDs, the emission wavelength is estimated in real time. The method is validated by using a 1.58 μm distributed feedback(DFB) LD. The absorption spectra of mixture gas of CO_2 and CO are measured by means of the thermal tuning gas sensing system. The center wavelength of each absorption line is compared with the data in HITRAN2012 database. The results show that the deviations are less than 5 pm. This method fully meets the needs of spectroscopic measurement, and can be applied to spectroscopy, optical communications and other fields.