期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于FasterNet和YOLOv5改进的玻璃绝缘子自爆缺陷快速检测方法
1
作者 邬开俊 徐泽浩 单宏全 《高电压技术》 EI CAS CSCD 北大核心 2024年第5期1865-1876,共12页
为了实现对电力输电线路中绝缘子缺陷实时快速的巡检需求,提出了一种结合FasterNet-tiny和YOLOv5-s-v6.1网络模型改进的缺陷快速检测算法FasterNet-YOLOv5。首先引入参数量小推理速度更快的FasterNet网络替换原先的CSPDarkNet53主干网络... 为了实现对电力输电线路中绝缘子缺陷实时快速的巡检需求,提出了一种结合FasterNet-tiny和YOLOv5-s-v6.1网络模型改进的缺陷快速检测算法FasterNet-YOLOv5。首先引入参数量小推理速度更快的FasterNet网络替换原先的CSPDarkNet53主干网络,加快网络的检测速度。然后结合由GhostNetv2网络提出的解耦全连接注意力机制(decoupled fully connected,DFC),在主干特征提取网络中设计了DFC-FasterNet模块,模块中的DFC Attention机制可以在特征提取过程中增大感受野,提升网络的检测精度。最后针对玻璃绝缘子自爆缺陷目标较小和背景较复杂的情况,重新设计Neck模块,提出BiFPN-F特征融合模块,使网络更精确地定位绝缘子缺陷区域。实验结果表明:改进后的算法可以快速精准定位,其均值平均精度(mean average precision,mAP)达到93.3%,相较于改进前提升5.67%,检测速度达到45.7 Hz,较改进前提升近1倍。同时与最新的YOLOv8n和YOLOv7-tiny相比,改进后的FasterNet-YOLOv5在自爆缺陷上的检测精度和速度更具优势,该文所提算法能够更快速地对绝缘子及其自爆缺陷实时定位识别。 展开更多
关键词 缺陷检测 BiFPN-F FasterNet YOLOv5s dfc attention PConv
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部