研究了采用双框架控制力矩陀螺(Double Gimbaled Control Momentum Gyroscope,DGCMG)的敏捷卫星姿态/角动量联合控制问题,针对DGCMG的饱和奇异问题,提出了基于Lyapunov的姿态/角动量联合控制方法。首先,建立了采用两个平行构型DGCMG的...研究了采用双框架控制力矩陀螺(Double Gimbaled Control Momentum Gyroscope,DGCMG)的敏捷卫星姿态/角动量联合控制问题,针对DGCMG的饱和奇异问题,提出了基于Lyapunov的姿态/角动量联合控制方法。首先,建立了采用两个平行构型DGCMG的卫星姿态动力学模型,然后根据陀螺的力矩方程,通过可视化分析得出该构型只有内部隐奇异和饱和奇异两类奇异。隐奇异可以通过操纵律进行避免,而饱和奇异只能通过卸载方式来解决。为了避免采用推力器或磁力矩器等卸载方式带来的问题,设计了连续管理角动量的姿态/角动量联合控制器。此外,为了缩短系统的稳定时间,采用Sigmoid函数对控制器的参数选取进行了改进。该控制器完成敏捷卫星快速机动快速稳定任务的同时,还能连续调节角动量,达到姿态控制和角动量管理的折中。数值仿真结果验证了控制器的有效性。展开更多
文摘研究了采用双框架控制力矩陀螺(Double Gimbaled Control Momentum Gyroscope,DGCMG)的敏捷卫星姿态/角动量联合控制问题,针对DGCMG的饱和奇异问题,提出了基于Lyapunov的姿态/角动量联合控制方法。首先,建立了采用两个平行构型DGCMG的卫星姿态动力学模型,然后根据陀螺的力矩方程,通过可视化分析得出该构型只有内部隐奇异和饱和奇异两类奇异。隐奇异可以通过操纵律进行避免,而饱和奇异只能通过卸载方式来解决。为了避免采用推力器或磁力矩器等卸载方式带来的问题,设计了连续管理角动量的姿态/角动量联合控制器。此外,为了缩短系统的稳定时间,采用Sigmoid函数对控制器的参数选取进行了改进。该控制器完成敏捷卫星快速机动快速稳定任务的同时,还能连续调节角动量,达到姿态控制和角动量管理的折中。数值仿真结果验证了控制器的有效性。