期刊文献+
共找到2,468篇文章
< 1 2 124 >
每页显示 20 50 100
Evaluation on residual stresses of silicon-doped CVD diamond films using X-ray diffraction and Raman spectroscopy 被引量:10
1
作者 陈苏琳 沈彬 +2 位作者 张建国 王亮 孙方宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3021-3026,共6页
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o... The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa. 展开更多
关键词 silicon-doped diamond films silicon doping residual stress X-ray diffraction Raman spectroscopy
下载PDF
Effect of deposition parameters on micro-and nano-crystalline diamond films growth on WC-Co substrates by HFCVD 被引量:4
2
作者 张建国 王新昶 +1 位作者 沈彬 孙方宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3181-3188,共8页
The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentratio... The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentration. Orthogonal experiments were introduced to study the comprehensive effects of such three parameters on diamond films deposited on WC-Co substrates. Field emission scanning electron microscopy, atomic force microscopy and Raman spectrum were employed to analyze the morphology, growth rate and composition of as-deposited diamond films. The morphology varies from pyramidal to cluster features with temperature decreasing. It is found that the low total pressure is suitable for nano-crystalline diamond films growth. Moreover, the substrate temperature and total pressure have combined influence on the growth rate of the diamond films. 展开更多
关键词 hot filament chemical vapor deposition(HFCVD) diamond films WC-Co substrates deposition parameters
下载PDF
Enhancement of nucleation of diamond films deposited on copper substrate by nickel modification layer 被引量:3
3
作者 刘学璋 魏秋平 +1 位作者 翟豪 余志明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期667-673,共7页
A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibri... A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly. 展开更多
关键词 diamond film nickel interlayer Cu substrate chemical vapor deposition nucleation kinetics surface modification
下载PDF
Effects of deposition parameters on HFCVD diamond films growth on inner hole surfaces of WC-Co substrates 被引量:3
4
作者 王新昶 林子超 +1 位作者 沈彬 孙方宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期791-802,共12页
Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon c... Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min. 展开更多
关键词 hot filament chemical vapor deposition diamond film inner hole surface Taguchi method deposition parameter optimization
下载PDF
Preparation and characterization of diamond film on Cu substrate using Cu-diamond composite interlayer 被引量:1
5
作者 邱万奇 胡志刚 +2 位作者 刘仲武 曾德长 周克崧 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期758-763,共6页
Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles,... Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles, and depositing continuous diamond film on composite interlayer by hot-filament chemical vapor deposition (HFCVD). The interface characteristics, internal stress and adhesion strength were investigated by scanning electron microscopy, Raman analysis and indentation test. The results show that the continuous film without cracks is successfully obtained. The microstructure of the film is a mixture of large cubo-octahedron grains grown from homo-epitaxial growth and small grains with (111) apparent facets grown from lateral second nuclei. The improved adhesion between diamond film and substrate results from the deep anchoring of the diamond particles in the Cu matrix and the low residual stress in the film. 展开更多
关键词 diamond film composites layer ELECTROPLATING ADHESION chemical vapor deposition
下载PDF
Preparation, characterization and electrochemical properties of boron-doped diamond films on Nb substrates
6
作者 余志明 王健 +3 位作者 魏秋平 孟令聪 郝诗梦 龙芬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1334-1341,共8页
A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical... A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical bonding states, phase composition and electrochemical properties of each deposited sample were studied by scanning electron microscopy, Raman spectra, X-ray diffraction, microhardness indentation, and electrochemical analysis. Results show that the average grain size of diamond and the growth rate decrease with increasing the B/C ratio. The diamond films exhibit excellent adhesion under Vickers microhardness testing (9.8 N load). The sample with 2% B/C ratio has a wider potential window and a lower background current as well as a faster redox reaction rate in H2SO4 solution and KFe(CN)6 redox system compared with other doping level electrodes. 展开更多
关键词 diamond film hot filament chemical vapor deposition (HFCVD) boron doping electrochemical behavior niobium substrate electrode
下载PDF
Two Steps B Ion-Implantation of Diamond Film Grown on an n-Type Si Substrate and Its p-n Junction Effects
7
作者 孙秀平 冯克成 +2 位作者 李超 张红霞 费允杰 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2005年第6期1073-1076,共4页
Polycrystalline diamond thin films are deposited on an n-type Si substrates by hot filament chemical vapor deposition,and then are implanted with boron ions in a 200keV ion implanter.In order to achieve a better distr... Polycrystalline diamond thin films are deposited on an n-type Si substrates by hot filament chemical vapor deposition,and then are implanted with boron ions in a 200keV ion implanter.In order to achieve a better distribution of the implanted element,boron ions are implanted by two steps:implanting boron ions with the energy of 70keV first,and then with the energy of 100keV.The homogeneous distribution of the B ion is gained.The current-voltage characteristics of the samples are studied.It is found that the p-n heterojunction effect is achieved in these samples. 展开更多
关键词 ion implantation diamond film p-n junction
下载PDF
EFFECT OF GRID BIAS ON DEPOSITION OF NANOCRYSTALLINE DIAMOND FILMS
8
作者 徐锋 左敦稳 +1 位作者 卢文壮 王珉 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第4期317-322,共6页
A positive grid bias and a negative substrate bias voltages are applied to the self-made hot filament chemical vapor deposited (HFCVD) system. The high quality nanocrystalline diamond (NCD) film is successfully de... A positive grid bias and a negative substrate bias voltages are applied to the self-made hot filament chemical vapor deposited (HFCVD) system. The high quality nanocrystalline diamond (NCD) film is successfully deposited by double bias voltage nucleation and grid bias voltage growth. The Micro-Raman XRD SEM and AFM are used to investigate the diamond grain size, microstructure, surface morphology, and nucleation density. Results show that the obtained NCD has grain size of about 20 nm. The effect of grid bias voltage on the nucleation and the diamond growth is studied. Experimental results and theoretical analysis show that the positive grid bias increases the plasma density near the hot filaments, enhances the diamond nucleation, keeps the nanometer size of the diamond grains, and improves the quality of diamond film. 展开更多
关键词 nanocrystalline diamond film hot filament CVD substrate bias voltage grid bias voltage NUCLEATION
下载PDF
Study on the Dielectric Properties of Chemical Vapor Deposited Diamond Film
9
作者 汪浩 王秀芬 +1 位作者 郭林 朱鹤孙 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期274-279,共6页
Aim To study the dielectric properties of diamond film. Methods Dielectric properties (the frequency dependenCe of conductance, permittivity, and loss factor) of diamond film preped by DC are plasma jet chemical vap... Aim To study the dielectric properties of diamond film. Methods Dielectric properties (the frequency dependenCe of conductance, permittivity, and loss factor) of diamond film preped by DC are plasma jet chemical vapor deposition (CVD) were studied. Resuls Dielectric properties of CVD diamond fAn depend mainly on its polycrystalline nature, and the presence of non-diamond disordered graphitic regions and impurities between diamond grains of the film. Annealing at 500℃ leads to the removal of greater part of disordered graphitic regions, but am not remove all disordered graphitic regions and impurities. Conclusion Much work nab to be done tO prepare or post-treat diamond films before using CVD diamond as a substrate for electronic devices. 展开更多
关键词 dielectric properties diamond film DC are plasma jet CVD
下载PDF
DIAMOND FILMS DEPOSITED AT LOW TEMPERATURES MICROWAVE PLASMA-ASSISTED CVD METHOD
10
作者 王建军 吕反修 杨保雄 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1995年第2期83+79-83,共6页
Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in... Low-temperature deposition of diamond thin films in the range of 280 ̄445℃ has been successfully carried out by microwave plasma-assisted CVD method.At lower deposition temperatures (280 ̄445℃),the large increase in the nucleation density and great improvement in the average surfae roughness of the diamond were observed. Results of low temperature deposition and characterization of diamond thin films obtained are presented. 展开更多
关键词 diamond films low-temperature deposition microwave plasma
下载PDF
Amorphous SiO_2 interlayers for deposition of adherent diamond films onto WC-Co inserts 被引量:1
11
作者 崔雨潇 赵天奇 +1 位作者 孙方宏 沈彬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期3012-3022,共11页
Amorphous Si O2(a-Si O2) films were synthesized on WC-Co substrates with H2 and tetraethoxysilane(TEOS) via pyrolysis of molecular precursor.X-ray diffraction(XRD) pattern shows that silicon-cobalt compounds for... Amorphous Si O2(a-Si O2) films were synthesized on WC-Co substrates with H2 and tetraethoxysilane(TEOS) via pyrolysis of molecular precursor.X-ray diffraction(XRD) pattern shows that silicon-cobalt compounds form at the interface between a-Si O2 films and WC-Co substrates.Moreover,it is observed by transmission electron microscope(TEM) that the a-Si O2 films are composed of hollow mirco-spheroid a-Si O2 particles.Subsequently,the a-Si O2 films are used as intermediate films and chemical vapor deposition(CVD) diamond films are deposited on them.Indentation tests were performed to evaluate the adhesion of bi-layer(a-Si O2 + diamond) films on cemented carbide substrates.And the cutting performance of bi-layer(a-Si O2 + diamond) coated inserts was evaluated by machining the glass fiber reinforced plastic(GFRP).The results show that a-Si O2 interlayers can greatly improve the adhesive strength of diamond films on cemented carbide inserts;furthermore,thickness of the a-Si O2 interlayers plays a significant role in their effectiveness on adhesion enhancement of diamond films. 展开更多
关键词 hot filament chemical vapor deposition(HFCVD) diamond film WC-Co substrate INTERLAYER ADHESION
下载PDF
Si-doped diamond films prepared by chemical vapour deposition 被引量:1
12
作者 崔雨潇 张建国 +1 位作者 孙方宏 张志明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2962-2970,共9页
The effects of Si doping on morphology, components and structure characteristics of CVD diamond films were studied. Si-doped CVD diamond films were deposited on Si substrate by adding tetraethoxysilane (TEOS) into a... The effects of Si doping on morphology, components and structure characteristics of CVD diamond films were studied. Si-doped CVD diamond films were deposited on Si substrate by adding tetraethoxysilane (TEOS) into acetone as source of reactant gas. The morphology and microstructure of diamond films were characterized by scanning electron microcopy (SEM). The crystalline quality of diamond films was studied by Raman spectroscopy and X-ray diffractometry (XRD). The surface roughness of the films was evaluated with surface profilometer. The results suggest that Si doping tends to reduce the crystallite size, enhance grain refinement and inhibit the appearance of (11 I) facets. Raman spectra indicate that Si doping can enhance the formation of sp2 phase in diamond films. Moreover, Raman signal of SiC was detected, which suggests the existence of Si in the diamond films. Smooth fine-grained diamond (SFGD) film was synthesized at Si to C ratio of 1%. 展开更多
关键词 Si doping hot filament chemical vapor deposition (HFCVD) diamond films
下载PDF
Microscopic mechanical characteristics analysis of ultranano-crystalline diamond films
13
作者 丰杰 谢友能 +5 位作者 李周 吴先哲 李建国 梅军 余志明 魏秋平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3291-3296,共6页
The microscopic mechanical characteristics of ultranano-crystalline diamond films which were prepared in four different atmospheres were investigated for the applications in microelectron-mechanical system(MEMS).The... The microscopic mechanical characteristics of ultranano-crystalline diamond films which were prepared in four different atmospheres were investigated for the applications in microelectron-mechanical system(MEMS).The loading-unloading curves and the change of modulus and hardness of samples along with depth were achieved through nanoindenter.The results show that the films which are made in atmosphere without Ar have the highest recovery of elasticity,hardness(72.9 GPa) and elastic modulus(693.7 GPa) among the samples.Meanwhile,samples fabricated at a low Ar content have higher hardness and modulus.All the results above demonstrate that atmosphere without Ar or low Ar content leads to better mechanical properties of nanodiamond films that are the candidates for applications in MEMS. 展开更多
关键词 ultranano-crystalline diamond film NANOINDENTATION mechanical properties microelectron-mechanical system(MEMS)
下载PDF
Numerical Analysis of Nd:YAG Pulsed Laser Polishing CVD Self-standing Diamond Film 被引量:6
14
作者 XU Feng HU Haifeng +3 位作者 ZUO Dunwen XU Chun QING Zhenghua WANG Min 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期121-127,共7页
Chemical vapor deposited (CVD) diamond film has broad application foreground in high-tech fields. But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely a... Chemical vapor deposited (CVD) diamond film has broad application foreground in high-tech fields. But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely affect its extensive applications. Laser polishing is a useful method to smooth self-standing diamond film. At present, attentions have been focused on experimental research on laser polishing, but the revealing of theoretical model and the forecast of polishing process are vacant. The paper presents a finite element model to simulate and analyze the mechanism of laser polishing diamond based on laser thermal conduction theory. The experimental investigation is also carried out on Nd:YAG pulsed laser smoothing diamond thick film. The simulation results have good accordance with the results of experimental results. The temperature and thermal stress fields are investigated at different incidence angles and parameters of Nd:YAG pulsed laser. The pyramidal-like roughness of diamond thick film leads to the non-homogeneous temperature fields. The temperature at the peak of diamond film is much higher than that in the valley, which leads to the smoothing of diamond thick film. The effect of laser parameters on the surface roughness and thickness of graphite transition layer is also carried out. The results show that high power density laser makes the diamond surface rapid heating, evaporation and sublimation after its graphitization. It is also found that the good polish quality of diamond thick film can be obtained by a combination of large incident angle, moderate laser pulsed energy, large repetition rate and moderate laser pulse width. The results obtained here provide the theoretical basis for laser polishing diamond film with high efficiency and high quality. 展开更多
关键词 chemical vapor deposition self-standing diamond film POLISHING pulsed laser finite element surface roughness
下载PDF
Effect of deposition temperature on properties of boron-doped diamond films on tungsten carbide substrate 被引量:9
15
作者 Bin SHEN Su-lin CHEN Fang-hong SUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第4期729-738,共10页
Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of d... Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of deposition temperature on the properties of the boron-doped diamond films on tungsten carbide substrate was investigated.It is found that boron doping obviously enhances the growth rate of diamond films.A relatively high growth rate of 544 nm/h was obtained for the BDD film deposited on the tungsten carbide at 650°C.The added boron-containing precursor gas apparently reduced activation energy of film growth to be 53.1 kJ/mol,thus accelerated the rate of deposition chemical reaction.Moreover,Raman and XRD analysis showed that heavy boron doping(750 and 850°C)deteriorated the diamond crystallinity and produced a high defect density in the BDD films.Overall,600-700°C is found to be an optimum substrate temperature range for depositing BDD films on tungsten carbide substrate. 展开更多
关键词 hot filament chemical vapor deposition diamond film boron doping substrate temperature tungsten carbide
下载PDF
Co evolutions for WC-Co with different Co contents during pretreatment and HFCVD diamond film growth processes 被引量:6
16
作者 Xin-chang WANG Cheng-chuan WANG +1 位作者 Wei-kai HE Fang-hong SUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第3期469-486,共18页
Systematical researches were accomplished on WC-Co with different Co contents(6%,10%and 12%,mass fraction).Based on the XPS and EDX,from orthogonal pretreatment experiments,it is indicated that the acid concentration,... Systematical researches were accomplished on WC-Co with different Co contents(6%,10%and 12%,mass fraction).Based on the XPS and EDX,from orthogonal pretreatment experiments,it is indicated that the acid concentration,the time of the acid pretreatment and the original Co content have significant influences on the Co-removal depth(D).Moreover,the specimen temperature,original Co content and Co-removal depth dependences of the Co evolution in nucleation,heating(in pure H2 atmosphere)and growth experiments were discussed,and mechanisms of Co evolutions were summarized,providing sufficient theoretical bases for the deposition of high-quality diamond films on WC-Co substrates,especially Co-rich WC-Co substrates.It is proven that the Co-rich substrate often presents rapid Co diffusion.The high substrate temperature can promote the Co diffusion in the pretreated substrate,while acts as a Co-etching process for the untreated substrates.It is finally found that the appropriate Co-removal depth for the WC-12%Co substrate is 8-9μm. 展开更多
关键词 HFCVD diamond film WC-CO Murakami-acid pretreatment Co content Co evolution
下载PDF
Simulations of the Dependence of Gas Physical Parameters on Deposition Variables during HFCVD Diamond Films 被引量:3
17
作者 Aiying WANG Kwangryeol Lee +1 位作者 Chao SUN Lishi WEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第5期599-604,共6页
During the growth of the hot filament chemical vapor deposition (HFCVD) diamond films, numerical simulations in a 2-D mathematical model were employed to investigate the influence of various deposition parameters on... During the growth of the hot filament chemical vapor deposition (HFCVD) diamond films, numerical simulations in a 2-D mathematical model were employed to investigate the influence of various deposition parameters on the gas physical parameters, including the temperature, velocity and volume density of gas. It was found that, even in the case of optimized deposition parameters, the space distributions of gas parameters were heterogeneous due primarily to the thermal blockage come from the hot filaments and cryogenic pump effect arisen from the cold reactor wall. The distribution of volume density agreed well with the thermal round-flow phenomenon, one of the key obstacles to obtaining high growth rate in HFCVD process. In virtue of isothermal boundary with high temperature or adiabatic boundary condition of reactor wall, however, the thermal roundflow was profoundly reduced and as a consequence, the uniformity of gas physical parameters was considerably improved, as identified by the experimental films growth. 展开更多
关键词 Gas physical parameters Simulations diamond films HFCVD
下载PDF
Microwave CVD Thick Diamond Film Synthesis Using CH4/H2/H2O Gas Mixtures 被引量:3
18
作者 满卫东 汪建华 +3 位作者 王传新 马志斌 王升高 熊礼威 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第3期329-332,共4页
Thick diamond films with a thickness of up to 1.2 mm and a area of 20 cm^2 have been grown in a homemade 5 kW microwave plasma chemical vapor deposition (MPCVD) reactor using CH4/H2/H2O gas mixtures. The growth rate... Thick diamond films with a thickness of up to 1.2 mm and a area of 20 cm^2 have been grown in a homemade 5 kW microwave plasma chemical vapor deposition (MPCVD) reactor using CH4/H2/H2O gas mixtures. The growth rate, radial profiles of the film thickness, diamond morphology and quality were evaluated with a range of parameters such as the substrate temperature of 700℃ to 1100℃, the fed gas composition CH4/H2 = 3.0%, H2O/H2 = 0.0%,-2.4%. They were characterized by scanning electron microscopy and Raman spectroscopy. Translucent diamond wafers have been produced without any sign of non-diamond carbon phases, Raman peak as narrow as 4.1 cm^-1. An interesting type of diamond growth instability under certain deposition conditions was observed in a form of accelerated growth of selected diamond crystallites of a very big lateral size, about 1 mm, and of a better structure compared to the rest of the film. 展开更多
关键词 diamond film MICROWAVE Raman spectroscopy WATER
下载PDF
Fabrication and Characterization of FeNiCr Matrix-TiC Composite for Polishing CVD Diamond Film 被引量:3
19
作者 Zhuji Jin Zewei Yuan Renke Kang Boxian Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第3期319-324,共6页
Dynamic friction polishing (DFP) is one of the most promising methods appropriate for polishing CVD diamond film with high efficiency and low cost. By this method CVD diamond film is polished through being simply pr... Dynamic friction polishing (DFP) is one of the most promising methods appropriate for polishing CVD diamond film with high efficiency and low cost. By this method CVD diamond film is polished through being simply pressed against a metal disc rotating at a high speed utilizing the thermochemical reaction occurring as a result of dynamic friction between them in the atmosphere. However, the relatively soft materials such as stainless steel, cast iron and nickel alloy widely used for polishing CVD diamond film are easy to wear and adhere to diamond film surface, which may further lead to low efficiency and poor polishing quality. In this paper, FeNiCr matrix-TiC composite used as grinding wheel for polishing CVD diamond film was obtained by combination of mechanical alloying (MA) and spark plasma sintering (SPS). The process of ball milling, composition, density, hardness, high-temperature oxidation resistance and wear resistance of the sintered piece were analyzed. The results show that TiC was introduced in MA-SPS process and had good combination with FeNiCr matrix and even distribution in the matrix. The density of composite can be improved by mechanical alloying. The FeNiCr matrix-TiC composite obtained at 1273 K was found to be superior to at 1173 K sinterin8 in hardness, high-temperature oxidation resistance and wearability. These properties are more favorable than SUS304 for the preparation of high-performance grinding wheel for polishing CVD diamond film. 展开更多
关键词 CVD diamond film FeNiCr matrix-TiC composite Spark plasma sintering Mechanical alloying
下载PDF
Effects of the electric field at the edge of a substrate to deposit a φ100 mm uniform diamond film in a 2.45 GHz MPCVD system 被引量:3
20
作者 Kang AN Shuai ZHANG +6 位作者 Siwu SHAO Jinlong LIU Junjun WEI Liangxian CHEN Yuting ZHENG Qing LIU Chengming LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第4期147-154,共8页
In this study,uniform diamond films with a diameter of 100 mm were deposited in a 15 kW/2.45 GHz ellipsoidal microwave plasma chemical vapour deposition system.A phenomenological model previously developed by our grou... In this study,uniform diamond films with a diameter of 100 mm were deposited in a 15 kW/2.45 GHz ellipsoidal microwave plasma chemical vapour deposition system.A phenomenological model previously developed by our group was used to simulate the distribution of the electric strength and electron density of plasma.Results indicate that the electric field in the cavity includes multiple modes,i.e.TM_(02) and TM_(03).When the gas pressure exceeds 10 kPa,the electron density of plasma increases and plasma volume decreases.A T-shaped substrate was developed to achieve uniform temperature,and the substrate was suspended in air fromφ70 to 100 mm,thus eliminating vertical heat dissipation.An edge electric field was added to the system after the introduction of the T-shaped substrate.Moreover,the plasma volume in this case was greater than that in the central electric field but smaller than that in the periphery electric field of the TM_(02) mode.This indicates that the electric field above and below the edge benefits the plasma volume rather than the periphery electric field of the TM_(02) mode.The quality,uniformity and surface morphology of the deposited diamond films were primarily investigated to maintain substrate temperature uniformity.When employing the improved substrate,the thickness unevenness of theφ100 mm diamond film decreased from 22%to 7%. 展开更多
关键词 MPCVD 2.45 GHz diamond film plasma simulation
下载PDF
上一页 1 2 124 下一页 到第
使用帮助 返回顶部