New Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA) based lossless grounded and floating inductance simulation circuits have been proposed. The proposed grounded simulated inductance circuit emplo...New Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA) based lossless grounded and floating inductance simulation circuits have been proposed. The proposed grounded simulated inductance circuit employs a single VD-DIBA, one floating resistance and one grounded capacitor. The floating simulated inductance (FI) circuits employ two VD-DIBAs with two passive components (one floating resistance and one grounded capacitor). The circuit for grounded inductance does not require any realization conditions where as in case of floating inductance circuits, a single matching condition is needed. Simulation results demonstrating the applications of the new simulated inductors using CMOS VD-DIBAs have been included to confirm the workability of the new circuits.展开更多
Recently, voltage differencing-differential input buffered amplifiers (VD-DIBA)-based electronically controllable sinusoidal oscillator has been presented that it does not have the capability of complete independence ...Recently, voltage differencing-differential input buffered amplifiers (VD-DIBA)-based electronically controllable sinusoidal oscillator has been presented that it does not have the capability of complete independence of frequency of oscillation (FO) and condition of oscillation (CO) as well as electronic control of both CO and FO. In this article, a new fully-uncoupled electronically controllable sinusoidal oscillator using two VD-DIBAs, two grounded capacitors and two resistors has been proposed which offers important advantages such as 1) totally uncoupled and electronically controlled condition of oscillation (CO) and frequency of oscillation (FO);2) low active and passive sensitivities;and 3) a very good frequency stability factor. The effects of non-idealities of the VD-DIBAs on the proposed oscillator are also investigated. The validity of the proposed formulation has been confirmed by SPICE simulation with TSMC 0.18 μm process parameters.展开更多
文摘New Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA) based lossless grounded and floating inductance simulation circuits have been proposed. The proposed grounded simulated inductance circuit employs a single VD-DIBA, one floating resistance and one grounded capacitor. The floating simulated inductance (FI) circuits employ two VD-DIBAs with two passive components (one floating resistance and one grounded capacitor). The circuit for grounded inductance does not require any realization conditions where as in case of floating inductance circuits, a single matching condition is needed. Simulation results demonstrating the applications of the new simulated inductors using CMOS VD-DIBAs have been included to confirm the workability of the new circuits.
文摘Recently, voltage differencing-differential input buffered amplifiers (VD-DIBA)-based electronically controllable sinusoidal oscillator has been presented that it does not have the capability of complete independence of frequency of oscillation (FO) and condition of oscillation (CO) as well as electronic control of both CO and FO. In this article, a new fully-uncoupled electronically controllable sinusoidal oscillator using two VD-DIBAs, two grounded capacitors and two resistors has been proposed which offers important advantages such as 1) totally uncoupled and electronically controlled condition of oscillation (CO) and frequency of oscillation (FO);2) low active and passive sensitivities;and 3) a very good frequency stability factor. The effects of non-idealities of the VD-DIBAs on the proposed oscillator are also investigated. The validity of the proposed formulation has been confirmed by SPICE simulation with TSMC 0.18 μm process parameters.