A new steganographic method by pixel-value differencing(PVD)using general quantization ranges of pixel pairs’difference values is proposed.The objective of this method is to provide a data embedding technique with a ...A new steganographic method by pixel-value differencing(PVD)using general quantization ranges of pixel pairs’difference values is proposed.The objective of this method is to provide a data embedding technique with a range table with range widths not limited to powers of 2,extending PVD-based methods to enhance their flexibility and data-embedding rates without changing their capabilities to resist security attacks.Specifically,the conventional PVD technique partitions a grayscale image into 1×2 non-overlapping blocks.The entire range[0,255]of all possible absolute values of the pixel pairs’grayscale differences in the blocks is divided into multiple quantization ranges.The width of each quantization range is a power of two to facilitate the direct embedding of the bit information with high embedding rates.Without using power-of-two range widths,the embedding rates can drop using conventional embedding techniques.In contrast,the proposed method uses general quantization range widths,and a multiple-based number conversion mechanism is employed skillfully to implement the use of nonpower-of-two range widths,with each pixel pair being employed to embed a digit in the multiple-based number.All the message bits are converted into a big multiple-based number whose digits can be embedded into the pixel pairs with a higher embedding rate.Good experimental results showed the feasibility of the proposed method and its resistance to security attacks.In addition,implementation examples are provided,where the proposed method adopts non-power-of-two range widths and employsmultiple-based number conversion to expand the data-hiding and steganalysis-resisting capabilities of other PVD methods.展开更多
To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched l...To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched layer(ESC-PML) based upon the exponential time differencing(ETD) method is proposed.The proposed implementation can not only reduce the number of auxiliary variables in the SC-PML regions but also maintain the ability of the original SC-PML in terms of the absorbing performance. Compared with the other existed algorithms, the ETDFDTD method shows the least memory consumption resulting in the computational efficiency. The effectiveness and efficiency of the proposed ESC-PML scheme is verified through the RCS relevant problems including the perfect E conductor(PEC) sphere model and the patch antenna model. The results indicate that the proposed scheme has the advantages of the ETD-FDTD method and ESC-PML scheme in terms of high computational efficiency and considerable computational accuracy.展开更多
Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of n...Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.展开更多
We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponent...We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponential time differencing and Adams–Bashforth–Moulton method. The numerical results show that the schemes are more accurate and more efficient than Adams predictor-corrector method. The exponential time differencing method has been developed and perfected by the present studies.展开更多
A new multi function voltage-mode universal biquadratic filter using single Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA), two capacitors and one resistor is proposed. The proposed configuration...A new multi function voltage-mode universal biquadratic filter using single Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA), two capacitors and one resistor is proposed. The proposed configuration has four inputs and one output and can realize all the five standard filters from the same circuit configuration. The presented biquad filter offers low active and passive sensitivities. The validity of proposed universal biquadratic filter has been verified by SPICE simulation using 0.35 μm MIETEC technology.展开更多
The main purpose in developing the steganographic algorithms lies in achieving most of the steganographic objectives which comprise the embedding capacity, imperceptibility, security, robustness and complexity. In thi...The main purpose in developing the steganographic algorithms lies in achieving most of the steganographic objectives which comprise the embedding capacity, imperceptibility, security, robustness and complexity. In this paper, we propose a high quality steganographic algorithm using new block structure which makes a good use of both modulus function and pixel-value differencing, namely, MF-PVD. We have made many experiments with various test images from several galleries, such as USC-SIPI and UWATERLOO-LINK. The performance of our proposed algorithm is verified using three different performance metrics which include peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and embedding capacity (EC). Experimental results and comparisons with six pertinent state-of-art algorithms are given to prove the validation and efficiency of the proposed algorithm.展开更多
In order to recover unknown space-dependent function G(x)or unknown time-dependent function H(t)in the wave source F(x;t)=G(x)H(t),we develop a technique of homogenized function and differencing equations,which can si...In order to recover unknown space-dependent function G(x)or unknown time-dependent function H(t)in the wave source F(x;t)=G(x)H(t),we develop a technique of homogenized function and differencing equations,which can significantly reduce the difficulty in the inverse wave source recovery problem,only needing to solve a few equations in the problem domain,since the initial condition/boundary conditions and a supplementary final time condition are satisfied automatically.As a consequence,the eigenfunctions are used to expand the trial solutions,and then a small scale linear system is solved to determine the expansion coefficients from the differencing equations.Because the ill-posedness of the inverse wave source problem is greatly reduced,the present method is accurate and stable against a large noise up to 50%,of which the numerical tests confirm the observation.展开更多
The Filon-type quadrature is efficient for highly oscillatory functions - Fourier transforms. Based on Cox and Matthews' ETD schemes, the higher order single step exponential time differencing schemes are presente...The Filon-type quadrature is efficient for highly oscillatory functions - Fourier transforms. Based on Cox and Matthews' ETD schemes, the higher order single step exponential time differencing schemes are presented based on the Filon-type integration and the A-stability of the two-order Adams-Bashforth exponential time differencing scheme is considered. The effectiveness and accuracy of the schemes is tested.展开更多
The purpose of this paper is to introduce a new electronically controlled voltage mode sinusoidal oscillator (VMSO) using Voltage Differencing Transconductance Amplifiers (VDTA). The proposed circuit provides electron...The purpose of this paper is to introduce a new electronically controlled voltage mode sinusoidal oscillator (VMSO) using Voltage Differencing Transconductance Amplifiers (VDTA). The proposed circuit provides electronic control of ω0 and independent condition of oscillation (CO). It is found that the oscillator works very satisfactorily and pure sinusoidal waveforms are available at the outputs. The PSPICE simulation confirms the theoretical results. The proposed oscillator circuit employs only two VDTAs, along with two grounded capacitor and single grounded resistor. The circuit exhibits low active and passive sensitivities for ω0. Simulation results are obtained by using PSPICE software with TSMC CMOS 0.18 um process parameters.展开更多
This paper proposes a new filter biquad circuit, which utilizes three Current Differencing Buffered Amplifiers (CDBA), two capacitors and five resistors, and operates in the trans-resistance mode. This multi-input and...This paper proposes a new filter biquad circuit, which utilizes three Current Differencing Buffered Amplifiers (CDBA), two capacitors and five resistors, and operates in the trans-resistance mode. This multi-input and single-output multifunction filter uses only grounded capacitors. All the employed resistors are either grounded or virtually grounded, which is an important parameter for its implementation as an integrated circuit. The circuit enjoys independent tunability of angular frequency and bandwidth. The 0.5 μm technology process parameters have been utilized to test and verify the performance characteristics of the circuit using PSPICE. The non-ideal analysis and sensitivity analysis, transient response, Monte-Carlo analysis and calculations of total harmonic distortion have also been shown.展开更多
In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct effi...In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct efficient and accurate time discretization scheme for a large class of Hamiltonian partial differential equations(PDEs).The proposed scheme is a linear system,and can be solved more efficient than the original energy-preserving ex-ponential integrator scheme which usually needs nonlinear iterations.Various experiments are performed to verify the conservation,efficiency and good performance at relatively large time step in long time computations.展开更多
In this paper,we prove the optimal error estimates in L2 norm of the semidiscrete local discontinuous Galerkin(LDG)method for the thin film epitaxy problem without slope selection.To relax the severe time step restric...In this paper,we prove the optimal error estimates in L2 norm of the semidiscrete local discontinuous Galerkin(LDG)method for the thin film epitaxy problem without slope selection.To relax the severe time step restriction of explicit time marching methods,we employ a class of exponential time differencing(ETD)schemes for time integration,which is based on a linear convex splitting principle.Numerical experiments of the accuracy and long time simulations are given to show the efficiency and capability of the proposed numerical schemes.展开更多
In this paper,we investigate the performance of the exponential time differencing(ETD)method applied to the rotating shallow water equations.Comparing with explicit time stepping of the same order accuracy in time,the...In this paper,we investigate the performance of the exponential time differencing(ETD)method applied to the rotating shallow water equations.Comparing with explicit time stepping of the same order accuracy in time,the ETD algorithms could reduce the computational time in many cases by allowing the use of large time step sizes while still maintaining numerical stability.To accelerate the ETD simulations,we propose a localized approach that synthesizes the ETD method and overlapping domain decomposition.By dividing the original problem into many subdomain problems of smaller sizes and solving them locally,the proposed approach could speed up the calculation of matrix exponential vector products.Several standard test cases for shallow water equations of one or multiple layers are considered.The results show great potential of the localized ETD method for high-performance computing because each subdomain problem can be naturally solved in parallel at every time step.展开更多
An effective data hiding method based on pixel value differencing (PVD) and modulus function (MF) PVD (MF-PVD) was proposed. MF-PVD method was derived by Wang et al in which the MF was employed to adjust the rem...An effective data hiding method based on pixel value differencing (PVD) and modulus function (MF) PVD (MF-PVD) was proposed. MF-PVD method was derived by Wang et al in which the MF was employed to adjust the remainder of two pixels for data embedding and extraction. In the proposed method, a new remainder function in a more general form is defined by selecting proper parameters, in which an indeterminate equation is constructed and an optimal solution is applied to revise the pixels. This strategy leads to a significant image distortion reduction compared with the original method. The experiment reveals that, by preserving the original embedding capacity, the method provides better embedding efficiency than both MF-PVD and PVD methods.展开更多
A direction-of-arrival (DOA) estimation algorithm is presented based on covariance differencing and sparse signal recovery, in which the desired signal is embedded in noise with unknown covariance. The key point of ...A direction-of-arrival (DOA) estimation algorithm is presented based on covariance differencing and sparse signal recovery, in which the desired signal is embedded in noise with unknown covariance. The key point of the algorithm is to eliminate the noise component by forming the difference of original and transformed covariance matrix, as well as cast the DOA estimation considered as a sparse signal recovery problem. Concerning accuracy and complexity of estimation, the authors take a vectorization operation on difference matrix, and further enforce sparsity by reweighted l1-norm penalty. We utilize data-validation to select the regularization parameter properly. Meanwhile, a kind of symmetric grid division and refinement strategy is introduced to make the proposed algorithm effective and also to mitigate the effects of limiting estimates to a grid of spatial locations. Compared with the covariance-differencing-based multiple signal classification (MUSIC) method, the proposed is of salient features, including increased resolution, improved robustness to colored noise, distinguishing the false peaks easily, but with no requiring of prior knowledge of the number of sources.展开更多
In recent years, modern optical processing technologies, such as single point diamond turning, ion beam etching, and magneto-theological finishing, arc getting break- throughs. Machining precisions of super-smooth opt...In recent years, modern optical processing technologies, such as single point diamond turning, ion beam etching, and magneto-theological finishing, arc getting break- throughs. Machining precisions of super-smooth optics have also been significantly improved. However, with increasing demands for the optical surface quality,展开更多
This article presents a low voltage low power configuration of current differencing transconductance amplifier(CDTA)based on floating gate MOSFET.The proposed CDTA variant operates at lower supply voltage±1.4 V...This article presents a low voltage low power configuration of current differencing transconductance amplifier(CDTA)based on floating gate MOSFET.The proposed CDTA variant operates at lower supply voltage±1.4 V with total static power dissipation of 2.60 mW due to the low voltage feature of floating gate MOSFET.High transconductance up to 6.21 mA/V is achieved with extended linear range of the circuit i.e.±130μA.Two applications are illustrated to demonstrate the effectiveness of the proposed active block.A quadrature oscillator is realized using FGMOS based CDTA,two capacitors,and a resistor.The resistor is implemented using two NMOSFETs to provide high linearity and tunablility.Another application is the Schmitt trigger circuit based on the proposed CDTA variant.All circuits are simulated by using SPICE and TSMC 130 nm technology.展开更多
The Peng-Robison equation of state,one of the most extensively applied equations of state in the petroleum industry and chemical engineering,has an excel-lent appearance in predicting the thermodynamic properties of a...The Peng-Robison equation of state,one of the most extensively applied equations of state in the petroleum industry and chemical engineering,has an excel-lent appearance in predicting the thermodynamic properties of a wide variety of ma-terials.It has been a great challenge on how to design numerical schemes with preser-vation of mass conservation and energy dissipation law.Based on the exponential time difference combined with the stabilizing technique and added Lagrange multi-plier enforcing the mass conservation,we develop the efficientfirst-and second-order numerical schemes with preservation of maximum bound principle(MBP)to solve the single-component two-phase diffuse interface model with Peng-Robison equation of state.Convergence analyses as well as energy stability are also proven.Several two-dimensional and three-dimensional experiments are performed to verify these theo-retical results.展开更多
We extend the SCGS smoothing procedure (Symmetrical Collective Gauss-Seidel relaxation) proposed by S. P. Vanka[4], for multigrid solvers of the steady viscous incompressible Navier-Stokes equations, to corresponding ...We extend the SCGS smoothing procedure (Symmetrical Collective Gauss-Seidel relaxation) proposed by S. P. Vanka[4], for multigrid solvers of the steady viscous incompressible Navier-Stokes equations, to corresponding line-wise versions. The resulting relaxation schemes are integrated into the multigrid solver based on second-order upwind differencing presented in [5]. Numerical comparisons on the efficiency of point-wise and line-wise relaxations are presented展开更多
Characterisation and mapping of land cover/land use within forest areas over long-multitemporal intervals is a complex task.This complexity is mainly due to the location and extent of such areas and,as a consequence,t...Characterisation and mapping of land cover/land use within forest areas over long-multitemporal intervals is a complex task.This complexity is mainly due to the location and extent of such areas and,as a consequence,to the lack of full continuous cloud-free coverage of those large regions by one single remote sensing instrument.In order to provide improved long-multitemporal forest change detection using Landsat MSS and ETMin part of Mt.Kenya rainforest,and to develop a model for forest change monitoring,wavelet transforms analysis was tested against the ISOCLUS algorithm for the derivation of changes in natural forest cover,as determined using four simple ratio-based Vegetation Indices:Simple Ratio(SR),Normalised Difference Vegetation Index(NDVI),Renormalised Difference Vegetation Index(RDVI)and modified simple ratio(MSR).Based on statistical and empirical accuracy assessments,RDVI presented the optimal index for the case study.The overall accuracy statistic of the wavelet derived change/no-change was used to rank the performances of the indices as:RDVI(91.68%),MSR(82.55%),NDVI(79.73%)and SR(65.34%).The integrated discrete wavelet transformISOCLUS(DWTISOCLUS)result was 42.65%higher than the independent ISOCLUS approach in mapping the change/no-change information.The methodology suggested in this study presents a cost-effective and practical method to detect land-cover changes in support of decision-making for updating forest databases,and for long-term monitoring of vegetation changes from multisensor imagery.The current research contributes to Digital Earth with regards to geo-data acquisition,data mining and representation of one forest systems.展开更多
文摘A new steganographic method by pixel-value differencing(PVD)using general quantization ranges of pixel pairs’difference values is proposed.The objective of this method is to provide a data embedding technique with a range table with range widths not limited to powers of 2,extending PVD-based methods to enhance their flexibility and data-embedding rates without changing their capabilities to resist security attacks.Specifically,the conventional PVD technique partitions a grayscale image into 1×2 non-overlapping blocks.The entire range[0,255]of all possible absolute values of the pixel pairs’grayscale differences in the blocks is divided into multiple quantization ranges.The width of each quantization range is a power of two to facilitate the direct embedding of the bit information with high embedding rates.Without using power-of-two range widths,the embedding rates can drop using conventional embedding techniques.In contrast,the proposed method uses general quantization range widths,and a multiple-based number conversion mechanism is employed skillfully to implement the use of nonpower-of-two range widths,with each pixel pair being employed to embed a digit in the multiple-based number.All the message bits are converted into a big multiple-based number whose digits can be embedded into the pixel pairs with a higher embedding rate.Good experimental results showed the feasibility of the proposed method and its resistance to security attacks.In addition,implementation examples are provided,where the proposed method adopts non-power-of-two range widths and employsmultiple-based number conversion to expand the data-hiding and steganalysis-resisting capabilities of other PVD methods.
基金supported by the National Natural Science Foundation of China(61571022611971022)。
文摘To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched layer(ESC-PML) based upon the exponential time differencing(ETD) method is proposed.The proposed implementation can not only reduce the number of auxiliary variables in the SC-PML regions but also maintain the ability of the original SC-PML in terms of the absorbing performance. Compared with the other existed algorithms, the ETDFDTD method shows the least memory consumption resulting in the computational efficiency. The effectiveness and efficiency of the proposed ESC-PML scheme is verified through the RCS relevant problems including the perfect E conductor(PEC) sphere model and the patch antenna model. The results indicate that the proposed scheme has the advantages of the ETD-FDTD method and ESC-PML scheme in terms of high computational efficiency and considerable computational accuracy.
基金supported by the National Natural Science Foundation of China(6100115361271415)+2 种基金the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)
文摘Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.
基金The project supported by National Natural Science Foundation of China under Grant No.19902002
文摘We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponential time differencing and Adams–Bashforth–Moulton method. The numerical results show that the schemes are more accurate and more efficient than Adams predictor-corrector method. The exponential time differencing method has been developed and perfected by the present studies.
文摘A new multi function voltage-mode universal biquadratic filter using single Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA), two capacitors and one resistor is proposed. The proposed configuration has four inputs and one output and can realize all the five standard filters from the same circuit configuration. The presented biquad filter offers low active and passive sensitivities. The validity of proposed universal biquadratic filter has been verified by SPICE simulation using 0.35 μm MIETEC technology.
文摘The main purpose in developing the steganographic algorithms lies in achieving most of the steganographic objectives which comprise the embedding capacity, imperceptibility, security, robustness and complexity. In this paper, we propose a high quality steganographic algorithm using new block structure which makes a good use of both modulus function and pixel-value differencing, namely, MF-PVD. We have made many experiments with various test images from several galleries, such as USC-SIPI and UWATERLOO-LINK. The performance of our proposed algorithm is verified using three different performance metrics which include peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and embedding capacity (EC). Experimental results and comparisons with six pertinent state-of-art algorithms are given to prove the validation and efficiency of the proposed algorithm.
文摘In order to recover unknown space-dependent function G(x)or unknown time-dependent function H(t)in the wave source F(x;t)=G(x)H(t),we develop a technique of homogenized function and differencing equations,which can significantly reduce the difficulty in the inverse wave source recovery problem,only needing to solve a few equations in the problem domain,since the initial condition/boundary conditions and a supplementary final time condition are satisfied automatically.As a consequence,the eigenfunctions are used to expand the trial solutions,and then a small scale linear system is solved to determine the expansion coefficients from the differencing equations.Because the ill-posedness of the inverse wave source problem is greatly reduced,the present method is accurate and stable against a large noise up to 50%,of which the numerical tests confirm the observation.
基金Projects(02JJY2006, 03JJY2001) supported by Natural Science Foundation of Hunan Province project supported by JSPS Fellowship Research Program
文摘The Filon-type quadrature is efficient for highly oscillatory functions - Fourier transforms. Based on Cox and Matthews' ETD schemes, the higher order single step exponential time differencing schemes are presented based on the Filon-type integration and the A-stability of the two-order Adams-Bashforth exponential time differencing scheme is considered. The effectiveness and accuracy of the schemes is tested.
文摘The purpose of this paper is to introduce a new electronically controlled voltage mode sinusoidal oscillator (VMSO) using Voltage Differencing Transconductance Amplifiers (VDTA). The proposed circuit provides electronic control of ω0 and independent condition of oscillation (CO). It is found that the oscillator works very satisfactorily and pure sinusoidal waveforms are available at the outputs. The PSPICE simulation confirms the theoretical results. The proposed oscillator circuit employs only two VDTAs, along with two grounded capacitor and single grounded resistor. The circuit exhibits low active and passive sensitivities for ω0. Simulation results are obtained by using PSPICE software with TSMC CMOS 0.18 um process parameters.
文摘This paper proposes a new filter biquad circuit, which utilizes three Current Differencing Buffered Amplifiers (CDBA), two capacitors and five resistors, and operates in the trans-resistance mode. This multi-input and single-output multifunction filter uses only grounded capacitors. All the employed resistors are either grounded or virtually grounded, which is an important parameter for its implementation as an integrated circuit. The circuit enjoys independent tunability of angular frequency and bandwidth. The 0.5 μm technology process parameters have been utilized to test and verify the performance characteristics of the circuit using PSPICE. The non-ideal analysis and sensitivity analysis, transient response, Monte-Carlo analysis and calculations of total harmonic distortion have also been shown.
基金supported by the National Natural Science Foundation of China(Grant Nos.12171245,11971416,11971242,12301508)by the Natural Science Foundation of Henan Province(Grant No.222300420280)+1 种基金by the Natural Science Foundation of Hunan Province(Grant No.2023JJ40656)by the Scientific Research Fund of Xuchang University(Grant No.2024ZD010).
文摘In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct efficient and accurate time discretization scheme for a large class of Hamiltonian partial differential equations(PDEs).The proposed scheme is a linear system,and can be solved more efficient than the original energy-preserving ex-ponential integrator scheme which usually needs nonlinear iterations.Various experiments are performed to verify the conservation,efficiency and good performance at relatively large time step in long time computations.
基金This work is supported by NSFC grants No.11601490.
文摘In this paper,we prove the optimal error estimates in L2 norm of the semidiscrete local discontinuous Galerkin(LDG)method for the thin film epitaxy problem without slope selection.To relax the severe time step restriction of explicit time marching methods,we employ a class of exponential time differencing(ETD)schemes for time integration,which is based on a linear convex splitting principle.Numerical experiments of the accuracy and long time simulations are given to show the efficiency and capability of the proposed numerical schemes.
基金supported by U.S.Department of Energy through the grants DE-SC0016540,DE-SC0020270U.S.National Science Foundation through the grant DMS-1912626,Office of the Vice President for Research at the University of South Carolina through an ASPIRE grantNatural Science Foundation of China through the grant 11871454.
文摘In this paper,we investigate the performance of the exponential time differencing(ETD)method applied to the rotating shallow water equations.Comparing with explicit time stepping of the same order accuracy in time,the ETD algorithms could reduce the computational time in many cases by allowing the use of large time step sizes while still maintaining numerical stability.To accelerate the ETD simulations,we propose a localized approach that synthesizes the ETD method and overlapping domain decomposition.By dividing the original problem into many subdomain problems of smaller sizes and solving them locally,the proposed approach could speed up the calculation of matrix exponential vector products.Several standard test cases for shallow water equations of one or multiple layers are considered.The results show great potential of the localized ETD method for high-performance computing because each subdomain problem can be naturally solved in parallel at every time step.
基金supported by the National Natural Science Foundation of China (61272057)Fundamental Research Funds for the Central Universities (2012RC0612)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education (20130161120004)Hunan Provincial Natural Science Foundation of China (14JJ7024)Project funded by China Postdoctoral Science Foundation (2014M560123)
文摘An effective data hiding method based on pixel value differencing (PVD) and modulus function (MF) PVD (MF-PVD) was proposed. MF-PVD method was derived by Wang et al in which the MF was employed to adjust the remainder of two pixels for data embedding and extraction. In the proposed method, a new remainder function in a more general form is defined by selecting proper parameters, in which an indeterminate equation is constructed and an optimal solution is applied to revise the pixels. This strategy leads to a significant image distortion reduction compared with the original method. The experiment reveals that, by preserving the original embedding capacity, the method provides better embedding efficiency than both MF-PVD and PVD methods.
基金supported by the National Natural Science Foundation of China(61171137)
文摘A direction-of-arrival (DOA) estimation algorithm is presented based on covariance differencing and sparse signal recovery, in which the desired signal is embedded in noise with unknown covariance. The key point of the algorithm is to eliminate the noise component by forming the difference of original and transformed covariance matrix, as well as cast the DOA estimation considered as a sparse signal recovery problem. Concerning accuracy and complexity of estimation, the authors take a vectorization operation on difference matrix, and further enforce sparsity by reweighted l1-norm penalty. We utilize data-validation to select the regularization parameter properly. Meanwhile, a kind of symmetric grid division and refinement strategy is introduced to make the proposed algorithm effective and also to mitigate the effects of limiting estimates to a grid of spatial locations. Compared with the covariance-differencing-based multiple signal classification (MUSIC) method, the proposed is of salient features, including increased resolution, improved robustness to colored noise, distinguishing the false peaks easily, but with no requiring of prior knowledge of the number of sources.
基金supported by the National Natural Science Foundation of China(Nos.61627825 and 11275172)the State Key Laboratory of Modern Optical Instrumentation Innovation Program(MOI)(No.MOI2015 B06)
文摘In recent years, modern optical processing technologies, such as single point diamond turning, ion beam etching, and magneto-theological finishing, arc getting break- throughs. Machining precisions of super-smooth optics have also been significantly improved. However, with increasing demands for the optical surface quality,
文摘This article presents a low voltage low power configuration of current differencing transconductance amplifier(CDTA)based on floating gate MOSFET.The proposed CDTA variant operates at lower supply voltage±1.4 V with total static power dissipation of 2.60 mW due to the low voltage feature of floating gate MOSFET.High transconductance up to 6.21 mA/V is achieved with extended linear range of the circuit i.e.±130μA.Two applications are illustrated to demonstrate the effectiveness of the proposed active block.A quadrature oscillator is realized using FGMOS based CDTA,two capacitors,and a resistor.The resistor is implemented using two NMOSFETs to provide high linearity and tunablility.Another application is the Schmitt trigger circuit based on the proposed CDTA variant.All circuits are simulated by using SPICE and TSMC 130 nm technology.
基金supported by National Natural Science Foundation of China under grant number No.11971047supported by National Natural Science Foundation of China under grant number No.61962056.
文摘The Peng-Robison equation of state,one of the most extensively applied equations of state in the petroleum industry and chemical engineering,has an excel-lent appearance in predicting the thermodynamic properties of a wide variety of ma-terials.It has been a great challenge on how to design numerical schemes with preser-vation of mass conservation and energy dissipation law.Based on the exponential time difference combined with the stabilizing technique and added Lagrange multi-plier enforcing the mass conservation,we develop the efficientfirst-and second-order numerical schemes with preservation of maximum bound principle(MBP)to solve the single-component two-phase diffuse interface model with Peng-Robison equation of state.Convergence analyses as well as energy stability are also proven.Several two-dimensional and three-dimensional experiments are performed to verify these theo-retical results.
文摘We extend the SCGS smoothing procedure (Symmetrical Collective Gauss-Seidel relaxation) proposed by S. P. Vanka[4], for multigrid solvers of the steady viscous incompressible Navier-Stokes equations, to corresponding line-wise versions. The resulting relaxation schemes are integrated into the multigrid solver based on second-order upwind differencing presented in [5]. Numerical comparisons on the efficiency of point-wise and line-wise relaxations are presented
文摘Characterisation and mapping of land cover/land use within forest areas over long-multitemporal intervals is a complex task.This complexity is mainly due to the location and extent of such areas and,as a consequence,to the lack of full continuous cloud-free coverage of those large regions by one single remote sensing instrument.In order to provide improved long-multitemporal forest change detection using Landsat MSS and ETMin part of Mt.Kenya rainforest,and to develop a model for forest change monitoring,wavelet transforms analysis was tested against the ISOCLUS algorithm for the derivation of changes in natural forest cover,as determined using four simple ratio-based Vegetation Indices:Simple Ratio(SR),Normalised Difference Vegetation Index(NDVI),Renormalised Difference Vegetation Index(RDVI)and modified simple ratio(MSR).Based on statistical and empirical accuracy assessments,RDVI presented the optimal index for the case study.The overall accuracy statistic of the wavelet derived change/no-change was used to rank the performances of the indices as:RDVI(91.68%),MSR(82.55%),NDVI(79.73%)and SR(65.34%).The integrated discrete wavelet transformISOCLUS(DWTISOCLUS)result was 42.65%higher than the independent ISOCLUS approach in mapping the change/no-change information.The methodology suggested in this study presents a cost-effective and practical method to detect land-cover changes in support of decision-making for updating forest databases,and for long-term monitoring of vegetation changes from multisensor imagery.The current research contributes to Digital Earth with regards to geo-data acquisition,data mining and representation of one forest systems.