期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Conversion from Dimethyl Ether to Dimethoxymethane and Dimethoxyethane Using Dielectric-Barrier Discharge Plasma 被引量:4
1
作者 王育 刘昌俊 张月萍 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第3期2839-2841,共3页
Experimental investigation was conducted to convert dimethyl ether (DME) in the presence of steam using dielectric barrier discharge (DBD) at atmospheric pressure and 373 K. The flow rate of DME was 20 ml/min. The int... Experimental investigation was conducted to convert dimethyl ether (DME) in the presence of steam using dielectric barrier discharge (DBD) at atmospheric pressure and 373 K. The flow rate of DME was 20 ml/min. The introduction of steam resulted in an increase in the DME conversion and the selectivity of oxygenates. Plasma steam-enhanced dimethyl ether (DME) conversion led to a direct synthesis of DMMT and DMET, with a high selectivity of 5.78% and 17.99%, respectively. The addition of steam promoted the formation of 'plasma aerosol' that was favored for the formation of liquid oxygenates. The reaction pathway of plasma DME conversion was proposed. 展开更多
关键词 dielectric barrier discharge steam plasma dimethyl ether DIMETHOXYMETHANE dimethoxyethane
下载PDF
Catalytic Oxidation of Dimethyl Ether to Hydrocarbons over SnO_2/MgO and SnO_2/CaO Catalysts 被引量:6
2
作者 Lin Yu Jieyu Xu Ming Sun Xuetao Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第2期200-203,共4页
A novel reverse microemulsion method was used to prepare SnO2/MgO and SnO2/CaO catalysts. It was found that both the catalysts were active for the reaction of catalytic oxidation of dimethyl ether (DME) in the tempe... A novel reverse microemulsion method was used to prepare SnO2/MgO and SnO2/CaO catalysts. It was found that both the catalysts were active for the reaction of catalytic oxidation of dimethyl ether (DME) in the temperature range of 275 to 300 ℃. SnO2/CaO catalyst exhibits much higher activity than SnO2/MgO. On SnO2/CaO catalyst, DME conversion of 21.8% was obtained at 300℃, while selectivities to methyl formate (MF) and dimethoxyethane (DMET) of 19.1% and 59.0% respectively were obtained at 275 ℃. 展开更多
关键词 dimethyl ether catalytic oxidation methyl formate dimethoxyethane
下载PDF
An organometallic salt as the electrolyte additive to regulate lithium polysulfide redox and stabilize lithium anodes for robust lithium-sulfur batteries
3
作者 Yixuan Meng Meifang Zhang +5 位作者 Youliang Wang Chen Liu Ze Zhang Ji Yu Jianxin Cai Zhenyu Yang 《Science China Materials》 SCIE EI CAS CSCD 2024年第9期2880-2888,共9页
Lithium-sulfur(Li-S)batteries with high theoretical specific energy are considered to be one of the highly promising next-generation energy storage systems.However,the shuttle effect of lithium polysulfides(LiPSs)and ... Lithium-sulfur(Li-S)batteries with high theoretical specific energy are considered to be one of the highly promising next-generation energy storage systems.However,the shuttle effect of lithium polysulfides(LiPSs)and the interfacial instability of Li anodes have seriously hindered the practical application of Li-S batteries.Optimizing the electrolyte composition with additives can significantly improve the battery performance and has attracted great attention.Herein,we propose an organometallic salt,i.e.,nickel bromide dimethoxyethane(NiBr_(2)DME),as an electrolyte additive,which serves as the dual function of regulating LiPSs redox and synchronously stabilizing Li anodes.We reveal that NiBr_(2)DME can interact with LiPSs via Ni-S and Li-Br bonds,and accelerate the mutual transformation of LiPSs,thus reducing the accumulation of LiPSs in the electrolyte.In addition,NiBr_(2)DME can form a stable LiBr-containing interfacial layer on the Li metal surface,and promote the uniform electrodeposition of Li^(+)ions,and inhibit the formation of Li dendrites.Thus,Li-S batteries with a concentration of 0.5 mmol L^(-1)NiBr_(2)DME show an initial capacity of 919.8 mAh g^(-1)at 0.2 C,and a high capacity retention of 89.3%after 100 cycles.Even at the 4 C rate,a high discharge capacity of 602.9 mAh g^(-1)is achieved.Surprisingly,the good cycling performance is maintained under poor electrolyte conditions with sulfur loading of 4.8 mg cm^(-2)and electrlyte/sulfur ratio of 5µL mg^(-1).This work provides a positive solution to achieve the suppression of shuttle effect,the regulation of LiPSs redox and the stabilization of Li anodes. 展开更多
关键词 Li-S batteries electrolyte additive nickel bromide dimethoxyethane regulating LiPSs redox stabilizing Li anode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部