Experimental investigation was conducted to convert dimethyl ether (DME) in the presence of steam using dielectric barrier discharge (DBD) at atmospheric pressure and 373 K. The flow rate of DME was 20 ml/min. The int...Experimental investigation was conducted to convert dimethyl ether (DME) in the presence of steam using dielectric barrier discharge (DBD) at atmospheric pressure and 373 K. The flow rate of DME was 20 ml/min. The introduction of steam resulted in an increase in the DME conversion and the selectivity of oxygenates. Plasma steam-enhanced dimethyl ether (DME) conversion led to a direct synthesis of DMMT and DMET, with a high selectivity of 5.78% and 17.99%, respectively. The addition of steam promoted the formation of 'plasma aerosol' that was favored for the formation of liquid oxygenates. The reaction pathway of plasma DME conversion was proposed.展开更多
A novel reverse microemulsion method was used to prepare SnO2/MgO and SnO2/CaO catalysts. It was found that both the catalysts were active for the reaction of catalytic oxidation of dimethyl ether (DME) in the tempe...A novel reverse microemulsion method was used to prepare SnO2/MgO and SnO2/CaO catalysts. It was found that both the catalysts were active for the reaction of catalytic oxidation of dimethyl ether (DME) in the temperature range of 275 to 300 ℃. SnO2/CaO catalyst exhibits much higher activity than SnO2/MgO. On SnO2/CaO catalyst, DME conversion of 21.8% was obtained at 300℃, while selectivities to methyl formate (MF) and dimethoxyethane (DMET) of 19.1% and 59.0% respectively were obtained at 275 ℃.展开更多
Lithium-sulfur(Li-S)batteries with high theoretical specific energy are considered to be one of the highly promising next-generation energy storage systems.However,the shuttle effect of lithium polysulfides(LiPSs)and ...Lithium-sulfur(Li-S)batteries with high theoretical specific energy are considered to be one of the highly promising next-generation energy storage systems.However,the shuttle effect of lithium polysulfides(LiPSs)and the interfacial instability of Li anodes have seriously hindered the practical application of Li-S batteries.Optimizing the electrolyte composition with additives can significantly improve the battery performance and has attracted great attention.Herein,we propose an organometallic salt,i.e.,nickel bromide dimethoxyethane(NiBr_(2)DME),as an electrolyte additive,which serves as the dual function of regulating LiPSs redox and synchronously stabilizing Li anodes.We reveal that NiBr_(2)DME can interact with LiPSs via Ni-S and Li-Br bonds,and accelerate the mutual transformation of LiPSs,thus reducing the accumulation of LiPSs in the electrolyte.In addition,NiBr_(2)DME can form a stable LiBr-containing interfacial layer on the Li metal surface,and promote the uniform electrodeposition of Li^(+)ions,and inhibit the formation of Li dendrites.Thus,Li-S batteries with a concentration of 0.5 mmol L^(-1)NiBr_(2)DME show an initial capacity of 919.8 mAh g^(-1)at 0.2 C,and a high capacity retention of 89.3%after 100 cycles.Even at the 4 C rate,a high discharge capacity of 602.9 mAh g^(-1)is achieved.Surprisingly,the good cycling performance is maintained under poor electrolyte conditions with sulfur loading of 4.8 mg cm^(-2)and electrlyte/sulfur ratio of 5µL mg^(-1).This work provides a positive solution to achieve the suppression of shuttle effect,the regulation of LiPSs redox and the stabilization of Li anodes.展开更多
基金The project supported by the National Natural Science Foundation of China (No. 20376060)
文摘Experimental investigation was conducted to convert dimethyl ether (DME) in the presence of steam using dielectric barrier discharge (DBD) at atmospheric pressure and 373 K. The flow rate of DME was 20 ml/min. The introduction of steam resulted in an increase in the DME conversion and the selectivity of oxygenates. Plasma steam-enhanced dimethyl ether (DME) conversion led to a direct synthesis of DMMT and DMET, with a high selectivity of 5.78% and 17.99%, respectively. The addition of steam promoted the formation of 'plasma aerosol' that was favored for the formation of liquid oxygenates. The reaction pathway of plasma DME conversion was proposed.
基金This work was supported by the Natural Science Foundation of Guangdong Province (4205301, 06021468)Project of Science and Technology of Guangdong Province (2004B33401003, 2005B10201053)+1 种基金Project of Science and Technology of Guangzhou (2006 J1-C0501)National Natural Science Foundation of China (20203012).
文摘A novel reverse microemulsion method was used to prepare SnO2/MgO and SnO2/CaO catalysts. It was found that both the catalysts were active for the reaction of catalytic oxidation of dimethyl ether (DME) in the temperature range of 275 to 300 ℃. SnO2/CaO catalyst exhibits much higher activity than SnO2/MgO. On SnO2/CaO catalyst, DME conversion of 21.8% was obtained at 300℃, while selectivities to methyl formate (MF) and dimethoxyethane (DMET) of 19.1% and 59.0% respectively were obtained at 275 ℃.
基金supported by the Jiangxi Province Leading Talent Project for Academic and Technical Leaders in Major Disciplines(20213BCJ22024)National Natural Science Foundation of China(22269013,22263009 and 21863006)+1 种基金Natural Science Foundation of Jiangxi Province(20224ACB213001 and 20212BBE53051)Elite Scientists Sponsorship Program by Jiangxi Association for Science and Technology(2023QT07)。
文摘Lithium-sulfur(Li-S)batteries with high theoretical specific energy are considered to be one of the highly promising next-generation energy storage systems.However,the shuttle effect of lithium polysulfides(LiPSs)and the interfacial instability of Li anodes have seriously hindered the practical application of Li-S batteries.Optimizing the electrolyte composition with additives can significantly improve the battery performance and has attracted great attention.Herein,we propose an organometallic salt,i.e.,nickel bromide dimethoxyethane(NiBr_(2)DME),as an electrolyte additive,which serves as the dual function of regulating LiPSs redox and synchronously stabilizing Li anodes.We reveal that NiBr_(2)DME can interact with LiPSs via Ni-S and Li-Br bonds,and accelerate the mutual transformation of LiPSs,thus reducing the accumulation of LiPSs in the electrolyte.In addition,NiBr_(2)DME can form a stable LiBr-containing interfacial layer on the Li metal surface,and promote the uniform electrodeposition of Li^(+)ions,and inhibit the formation of Li dendrites.Thus,Li-S batteries with a concentration of 0.5 mmol L^(-1)NiBr_(2)DME show an initial capacity of 919.8 mAh g^(-1)at 0.2 C,and a high capacity retention of 89.3%after 100 cycles.Even at the 4 C rate,a high discharge capacity of 602.9 mAh g^(-1)is achieved.Surprisingly,the good cycling performance is maintained under poor electrolyte conditions with sulfur loading of 4.8 mg cm^(-2)and electrlyte/sulfur ratio of 5µL mg^(-1).This work provides a positive solution to achieve the suppression of shuttle effect,the regulation of LiPSs redox and the stabilization of Li anodes.