Objective: To observe the effect of simulated weightlessness on stress-strain relationship and the structural change of rabbit femoral vein. Methods: After seting up the Head-Down Tilt (-20°) (HDT) model to simul...Objective: To observe the effect of simulated weightlessness on stress-strain relationship and the structural change of rabbit femoral vein. Methods: After seting up the Head-Down Tilt (-20°) (HDT) model to simulate weightlessness, 24 healthy male New-Zealand Rabbits were randomly divided into HDT-21d group, HDT-10d group and control group, with 8 in each. Femoral venous strips and rings were used to make uniaxial tensile test of the longitudinal and circumferential specimens of the vessels. At last we observed the microstructure of femoral vein wall in 3 groups. Results : With the increasing of load stress, both longitudinal and circumferential strains of vein samples from 3 groups increased significantly (P<0. 01). With the decrease of unload stress, strains decrease obviously (P<0. 01). The unloaded longitudinal and the circumferential strain from 3 groups increased much than those of the loaded. Under the same stress (longitudinal 0-2. 0 g, circumferential 0. 5-1. 0 g) , HDT-21d group and HDT-10d group increased obviously in tlie longitudinal or circumferential strain (load and unload) than control, and HDT-21d increased much than that of HDT-10d. The contents and structures of femoral vein walls of HDT-rabbits changed significantly. Some endotheli-um cells of femoral vein became short, columnar or cubic even fell off. Smooth muscle layers became thinner. Conclusion:The compliance of femoral venous increased significantly after weightlessness-simulation and increased much obviously after 21d-HDT than that of 10 d. The structure of femoral vein wall changed obviously. The changes may be one reason for the increase of femoral vein compliance.展开更多
This research assesses the speed of blood flow across blood vessels and more specifically the veins in terms of Reynold’s number (laminar flow vs. turbulence flow) and in terms of overall speed of the blood when bein...This research assesses the speed of blood flow across blood vessels and more specifically the veins in terms of Reynold’s number (laminar flow vs. turbulence flow) and in terms of overall speed of the blood when being injected with high-speed saline particles. The authors propose a novel technique to generate accelerated-waved particles built from saline solution to enable the unblocking of partially-blocked healthy-walled veins, and to restore normal operations of these veins. The novel technique encompasses a pump that accelerates saline solutions into the blood stream of the vein and these oscillated waves break down the fats or deposits inside the veins in order to help the blood to flow freely without any obstruction. This research simulated the vein with blood stream using characteristics of the vein in terms of vein diameter, blood density, venous blood flow, and the viscosity of the blood at the normal body temperature. The speed of the overall blood flow after the injection of the accelerated saline droplet solution was determined as well as the depth of penetration of the accelerated particles in order to cleanse the inside of the vein. Results are promising in terms of not altering significantly the overall speed of the bloodstream and also in terms of efficacy of the length of the vein which is being cleaned using this accelerated particle method.展开更多
基金Supported by Grant from the National Natural Science Foundation of China(30000197)
文摘Objective: To observe the effect of simulated weightlessness on stress-strain relationship and the structural change of rabbit femoral vein. Methods: After seting up the Head-Down Tilt (-20°) (HDT) model to simulate weightlessness, 24 healthy male New-Zealand Rabbits were randomly divided into HDT-21d group, HDT-10d group and control group, with 8 in each. Femoral venous strips and rings were used to make uniaxial tensile test of the longitudinal and circumferential specimens of the vessels. At last we observed the microstructure of femoral vein wall in 3 groups. Results : With the increasing of load stress, both longitudinal and circumferential strains of vein samples from 3 groups increased significantly (P<0. 01). With the decrease of unload stress, strains decrease obviously (P<0. 01). The unloaded longitudinal and the circumferential strain from 3 groups increased much than those of the loaded. Under the same stress (longitudinal 0-2. 0 g, circumferential 0. 5-1. 0 g) , HDT-21d group and HDT-10d group increased obviously in tlie longitudinal or circumferential strain (load and unload) than control, and HDT-21d increased much than that of HDT-10d. The contents and structures of femoral vein walls of HDT-rabbits changed significantly. Some endotheli-um cells of femoral vein became short, columnar or cubic even fell off. Smooth muscle layers became thinner. Conclusion:The compliance of femoral venous increased significantly after weightlessness-simulation and increased much obviously after 21d-HDT than that of 10 d. The structure of femoral vein wall changed obviously. The changes may be one reason for the increase of femoral vein compliance.
文摘This research assesses the speed of blood flow across blood vessels and more specifically the veins in terms of Reynold’s number (laminar flow vs. turbulence flow) and in terms of overall speed of the blood when being injected with high-speed saline particles. The authors propose a novel technique to generate accelerated-waved particles built from saline solution to enable the unblocking of partially-blocked healthy-walled veins, and to restore normal operations of these veins. The novel technique encompasses a pump that accelerates saline solutions into the blood stream of the vein and these oscillated waves break down the fats or deposits inside the veins in order to help the blood to flow freely without any obstruction. This research simulated the vein with blood stream using characteristics of the vein in terms of vein diameter, blood density, venous blood flow, and the viscosity of the blood at the normal body temperature. The speed of the overall blood flow after the injection of the accelerated saline droplet solution was determined as well as the depth of penetration of the accelerated particles in order to cleanse the inside of the vein. Results are promising in terms of not altering significantly the overall speed of the bloodstream and also in terms of efficacy of the length of the vein which is being cleaned using this accelerated particle method.