期刊文献+
共找到5,111篇文章
< 1 2 250 >
每页显示 20 50 100
Study on the Stress of DLC/MCT Interface by Finite Element Method
1
作者 JU Jian-hua, XIA Yi-ben, ZHANG Wei-li, LU Yu, WANG Lin-jun, SHI Wei-min School of Material Science and Engineering, Shanghai University Shanghai 200072, China National Lab for Infrared Physics. Shanghai Institute of Technical Physics, Chinese Academy of 《Advances in Manufacturing》 SCIE CAS 2000年第S1期153-157,共5页
Micro-indention and finite element method (FEM) are used to study the stress at the interface between diamond-like carbon (DLC) film and mercury cadmium telluride (MCT) substrate, with different coating thickness, de... Micro-indention and finite element method (FEM) are used to study the stress at the interface between diamond-like carbon (DLC) film and mercury cadmium telluride (MCT) substrate, with different coating thickness, deposition temperature and indention load. The FEM simulation results show that when Young's modulus ratio of the coating to the substrate Ec/Es<1, Whether a load was applied or not, the interfacial maximum shear stress decreased with the increase of coating thickness. The Von mises stress always concentrated at the interface. The maximum value of the stress locates at the edge of the interface for thin film (h1/h2<0. l), however, it will locate at the center of the interface while the film become thick (h1/h2>0. 1 ). The stress also increased with raising the film deposition temperature, and the temperature affected the strain obviously. When a load was applied, the stress would concentrate where the load was applied, and the stress value is much larger than that of unloading. When the film stress exceeds the film fracture strength, film cracking occurs at the location where load is applied. 展开更多
关键词 dlc films stress finite element method
下载PDF
A FINITE ELEMENT METHOD FOR STRESS ANALYSIS OR ELASTOPLASTIC BODY WITH POLYGONAL LINE STRAIN——HARDENING
2
作者 徐孝伟 沈珏铭 邬耀宗 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1984年第3期1375-1381,共7页
In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relat... In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation. 展开更多
关键词 A finite element method FOR stress ANALYSIS OR ELASTOPLASTIC BODY WITH POLYGONAL LINE STRAIN HARDENING KI IO
下载PDF
Evaluation of mixed-mode stress intensity factors by extended finite element method 被引量:3
3
作者 茹忠亮 赵洪波 尹顺德 《Journal of Central South University》 SCIE EI CAS 2013年第5期1420-1425,共6页
Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function... Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient. 展开更多
关键词 stress intensity factor (SIF) interaction integral method extended finite element method (XFEM)
下载PDF
Three-Dimensional Thermo-Elastic-Plastic Finite Element Method Modeling for Predicting Weld-Induced Residual Stresses and Distortions in Steel Stiffened-Plate Structures 被引量:1
4
作者 Myung Su Yi Chung Min Hyun Jeom Kee Paik 《World Journal of Engineering and Technology》 2018年第1期176-200,共25页
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p... The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented. 展开更多
关键词 STEEL Stiffened-Plate Structures Weld-Induced Initial Distortion Weld-Induced Residual stress Nonlinear finite element method THREE-DIMENSIONAL Ther-mo-Elastic-Plastic finite element Analysis Full Scale Measurements
下载PDF
Three-dimensional analysis of elastic stress distribution of indented ceramic surface by finite element method 被引量:1
5
作者 Tatsuyuki NEZU 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期551-557,共7页
The three-dimensional stress distributions in the area surrounding indentation pattern for three different materials, Al2O3, Si3N4 and SiC were analyzed by finite element method(FEM). Those theoretical results were al... The three-dimensional stress distributions in the area surrounding indentation pattern for three different materials, Al2O3, Si3N4 and SiC were analyzed by finite element method(FEM). Those theoretical results were also compared with the experimental ones by Rockwell hardness test. The effect of loading stress on the plastic deformation in specimens, surface was investigated on the assumption of shear strain energy theory by Huber-Mises when the materials were indented. The distributions of nomal stress, shear stress, and Mises stress were analysed with variations of loading conditions. It is clear that the analytical results for the stress distributions, the crack length and its density of probability are in good agreement with the experimental results. 展开更多
关键词 锯齿状陶瓷表面 弹性应力分布 有限元法 三维分析
下载PDF
COMPUTATION OF STRESS INTENSITY FACTORS BY THE SUB-REGION MIXED FINITE ELEMENT METHOD OF LINES
6
作者 Yuan Si Xu Yongjun WILLIAMS F W 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第2期149-162,共14页
Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and effic... Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method. 展开更多
关键词 stress intensity factors finite element method of lines sub-region generalized variational principle ordinary differential equation solver
下载PDF
Using Extended Finite Element Method for Computation of the Stress Intensity Factor, Crack Growth Simulation and Predicting Fatigue Crack Growth in a Slant-Cracked Plate of 6061-T651 Aluminum
7
作者 Ehsan Hedayati Mohammad Vahedi 《World Journal of Mechanics》 2014年第1期24-30,共7页
The 6061-T651 aluminium alloy is one of the most common aluminium alloys for marine components and general structures. The stress intensity factor (SIF) is an important parameter for estimating the life of the cracked... The 6061-T651 aluminium alloy is one of the most common aluminium alloys for marine components and general structures. The stress intensity factor (SIF) is an important parameter for estimating the life of the cracked structure. In this paper, the stress intensity factors of a slant-cracked plate, which is made of 6061-T651 aluminum, have been calculated using extended finite element method (XFEM) and finite element method (FEM) in ABAQUS software and the results were compared with theoretical values. Numerical values obtained from these two methods were close to the theoretical values. In simulations of crack growth at different crack angles, the crack propagation angle values were closer to the theoretical values in XFEM method. Also, the accuracy and validity of fatigue crack growth curve were much closer to the theoretical graph in XFEM than the FEM. Therefore, in this paper the capabilities of XFEM were realized in analyzing issues such as cracks. 展开更多
关键词 stress INTENSITY Factors Extended finite element method finite element method Slant-Cracked Plate CRACK Propagation Angle Fatigue CRACK Growth
下载PDF
Genetic algorithm-finite element method inversion of the factors determining the recent tectonic stress field of part of East Asia area
8
作者 安美建 石耀霖 李方全 《Acta Seismologica Sinica(English Edition)》 EI CSCD 1998年第3期1-8,共8页
Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to dedu... Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to deduce the boundary forces and investigate controlling factors. It is suggested that the continent continent collision is the dominant factor controlling the Chinese tectonic stress field. The ocean continent convergence along the subduction zone is an important factor. There exists tensile boundary force along the marginal sea. 展开更多
关键词 genetic algorithm finite element method (GA FEM) tectonic stress field dynamic genetic algorithm inversion of finite element method
下载PDF
Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method 被引量:3
9
作者 王艳 谢英才 +1 位作者 张淑仪 兰晓东 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期468-473,共6页
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass ... Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates. 展开更多
关键词 surface acoustic wave ZnO films electromechanical coupling coefficient temperature coefficientof frequency 3D finite element method
下载PDF
Finite Element Analysis on Plane Stress Crack Growth in a Power-Law Hardening Material
10
作者 吴祥法 范天佑 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期247-251,共5页
Aim To determine numerically the field characteristics in the vied at the tip of a place crack growing steadily in a power-law hardening material. Meteods. Methods on the Euler mode and small-scale yield assumption, t... Aim To determine numerically the field characteristics in the vied at the tip of a place crack growing steadily in a power-law hardening material. Meteods. Methods on the Euler mode and small-scale yield assumption, the numerical results were given by nonlinear finite element analysis. Results The numerical results of the shape of the active plastic sone, the angular distribution of stresseses and Clack tip opening displacement (CTOD) in the vicinity at the hp of the steadily groWing CraCk are determined. Conclusion The comparison between the numerical results given by the present wort and those given by analytic asymptotic analysis shows that the present work reached a very high accuracy. 展开更多
关键词 plane stress crack growth steadily power-law hardening material asymptotic fields nonlinear finite element method
下载PDF
THE APPLICATION OF COMPATIBLE STRESS ITERATIVE METHOD IN DYNAMIC FINITE ELEMENT ANALYSIS OF HIGH VELOCITY IMPACT
11
作者 宋顺成 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第2期145-152,共8页
There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement compo... There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement components. In such finite element formulation, the stress components are constant in each element and they are discontinuous in any two neighboring elements. Therefore, the bases of using the virtual work principle in such elements are unreliable. In this paper, we introduce a new method, namely, the compatible stress iterative method, to eliminate the above-said difficulty. The calculated examples show that the calculation using the new method in dynamic finite element analysis of high velocity impact is valid and stable, and the element stiffness can be somewhat reduced. 展开更多
关键词 THE APPLICATION OF COMPATIBLE stress ITERATIVE method IN DYNAMIC finite element ANALYSIS OF HIGH VELOCITY IMPACT
下载PDF
THE STRESS SUBSPACE OF HYBRID STRESS ELEMENT AND THE DIAGONALIZATION METHOD FOR FLEXIBILITY MATRIX H 被引量:2
12
作者 张灿辉 冯伟 黄黔 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第11期1263-1273,共11页
The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identica... The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method. Because of the resulting diagonal flexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency, is improved greatly. The numerical examples show that the method is effective. 展开更多
关键词 hybrid stress finite element Hilbert stress subspace diagonalization method for flexibility matrix
下载PDF
Application of scaled boundary finite element method in static and dynamic fracture problems 被引量:2
13
作者 Zhenjun Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第3期243-256,共14页
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe... The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods. 展开更多
关键词 Scaled boundary finite element method Dynamic stress intensity factors Mixed-mode crack propagation Remeshing algorithm Linear elastic fracture mechanics
下载PDF
Dynamic Crack Propagation Analysis Using Scaled Boundary Finite Element Method 被引量:2
14
作者 林皋 朱朝磊 +1 位作者 李建波 胡志强 《Transactions of Tianjin University》 EI CAS 2013年第6期391-397,共7页
The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to pre... The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other. 展开更多
关键词 scaled boundary finite element method dynamic stress intensity factor remeshing dynamic fracture
下载PDF
Nonlinear simulation of arch dam cracking with mixed finite element method
15
作者 Ren Hao Li Tongchun Chen Huifang Zhao Lanhao 《Water Science and Engineering》 EI CAS 2008年第2期88-101,共14页
This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and... This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking. 展开更多
关键词 mixed finite element method contact pair nodes crack of arch dam SIMULATION thermal stress
下载PDF
Stress and Displacement Distribution of Soft Clay Slope with 2D and 3D Elastoplastic Finite Element Method
16
作者 严祖文 阎澍旺 李飒 《Transactions of Tianjin University》 EI CAS 2006年第4期308-312,共5页
Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability an... Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio. 展开更多
关键词 slope stability soft clay soil elastoplasticity finite element method end effect stress analysis
下载PDF
3D Finite Element Numerical Simulation of Residual Stresses on Electron Beam Welded BT20 Plates 被引量:5
17
作者 LixingHUO FurongCHEN +3 位作者 YufengZHANG LiZHANG FangjunLIU GangCHEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第1期117-120,共4页
A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical a... A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in as-welded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated. The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%- 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3) The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results. Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail. 展开更多
关键词 Electron beam local heat treatment Electron beam welding Titanium alloy finite element method Residual stress
下载PDF
Determination of stress intensity factor with direct stress approach using finite element analysis 被引量:3
18
作者 X.Ji F.Zhu P.F.He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第5期879-885,共7页
In this article, a direct stress approach based on finite element analysis to determine the stress intensity factor is improved. Firstly, by comparing the rigorous solution against the asymptotic solution for a proble... In this article, a direct stress approach based on finite element analysis to determine the stress intensity factor is improved. Firstly, by comparing the rigorous solution against the asymptotic solution for a problem of an infinite plate embedded a central crack, we found that the stresses in a restrictive interval near the crack tip given by the rigorous solution can be used to determine the stress intensity factor, which is nearly equal to the stress intensity factor given by the asymptotic solution. Secondly, the crack problem is solved numerically by the finite element method. Depending on the modeling capability of the software, we designed an adaptive mesh model to simulate the stress singularity. Thus, the stress result in an appropriate interval near the crack tip is fairly approximated to the rigorous solution of the corresponding crack problem. Therefore, the stress intensity factor may be calculated from the stress distribution in the appropriate interval, with a high accuracy. 展开更多
关键词 Fracture mechanics stress singularity stress intensity factor finite element method Direct stress method
下载PDF
Thermoelastic analysis of multiple defects with the extended finite element method 被引量:2
19
作者 Honggang Jia Yufeng Nie 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第6期1123-1137,共15页
In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or micr... In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method. 展开更多
关键词 Multiple defects stress intensity factors extended finite element method (XFEM) THERMOELASTIC
下载PDF
A novel twice-interpolation finite element method for solid mechanics problems 被引量:3
20
作者 C. Zheng S. C. Wu +1 位作者 X. H. Tang J. H. Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期265-278,共14页
Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed th... Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed through two stages of consecutive interpolation. The primary interpolation follows exactly the same procedure of standard FEM and is further reproduced according to both nodal values and averaged nodal gradients obtained from primary interpolation. The trial functions thus constructed have continuous nodal gradients and contain higher order polynomial without increasing total freedoms. Several benchmark examples and a real dam problem are used to examine the TFEM in terms of accuracy and convergence. Compared with standard FEM, TFEM can achieve significantly better accuracy and higher convergence rate, and the continuous nodal stress can be obtained without any smoothing operation. It is also found that TFEM is insensitive to the quality of the elemental mesh. In addition, the present TFEM can treat the incompressible material without any modification. 展开更多
关键词 Twice-interpolation finite element method·stress smoothing Volumetric locking Mesh distortion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部