At present, most lane line detection methods are aimed at simple road surface. There is still no good solution for the situation that the lane line contains arrow, text and other signs. The edge left by markers such a...At present, most lane line detection methods are aimed at simple road surface. There is still no good solution for the situation that the lane line contains arrow, text and other signs. The edge left by markers such as arrow and text will interfere with the detection of lane lines. In view of the situation of arrow mark and text mark interference between lane lines, the paper proposes a new processing algorithm. The algorithm consists of four parts, Gaussian blur, image graying processing, DLD-threshold (Dark-Light-Dark-threshold) algorithm, correlation filter edge extraction and Hough transform. Among them, the DLD-threshold algorithm and related filters are mainly used to remove the identification interference between lane lines. The test results on the Caltech Lanes dataset are given at the end of the article. The result of verification of this algorithm showed a max recognition rate of 97.2%.展开更多
文摘At present, most lane line detection methods are aimed at simple road surface. There is still no good solution for the situation that the lane line contains arrow, text and other signs. The edge left by markers such as arrow and text will interfere with the detection of lane lines. In view of the situation of arrow mark and text mark interference between lane lines, the paper proposes a new processing algorithm. The algorithm consists of four parts, Gaussian blur, image graying processing, DLD-threshold (Dark-Light-Dark-threshold) algorithm, correlation filter edge extraction and Hough transform. Among them, the DLD-threshold algorithm and related filters are mainly used to remove the identification interference between lane lines. The test results on the Caltech Lanes dataset are given at the end of the article. The result of verification of this algorithm showed a max recognition rate of 97.2%.