Polyethylene octene elastomer (POE) as impact modifier was incorporated into wood/polypropylene composites (WPC) to enhance the impact strength of the composite. Two extruding routes, i.e. direct extruding route and t...Polyethylene octene elastomer (POE) as impact modifier was incorporated into wood/polypropylene composites (WPC) to enhance the impact strength of the composite. Two extruding routes, i.e. direct extruding route and two-stage extruding route, were adopted to produce Wood Powder/PP/POE ternary composites. The mechanical and dynamic mechanical analysis (DMA) properties of the composites were investigated. The results showed that the addition of POE can increase the impact strength of the composites, and the composites produced via two-stage extruding route showed superior mechanical properties. The results of the DMA confirmed the mechanical tests.展开更多
Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA)....Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.展开更多
The aging properties of advanced composite T300/5405 which soaked in 15# hydraulic oil, 4010 lubricating oil, RP-3 kerosene and AHC-1 cleaner were studied. The absorption and mechanical properties of the composites we...The aging properties of advanced composite T300/5405 which soaked in 15# hydraulic oil, 4010 lubricating oil, RP-3 kerosene and AHC-1 cleaner were studied. The absorption and mechanical properties of the composites were measured, and the scanning electron microscopy (SEIVO, dynamic mechanical analysis (DMA) and the infrared analysis (IR) were used to investigate the properties' changes of the composite. The aging mechanism of composite T300/5405 was also discussed. The experimental results show that the absorption of the composite in AHC-1 was the biggest, and the other three mediums had little effect on the composites. The mechanical properties declined in the aging. The composites have undergone chemical change in the test; Tg rose or declined atter the aging, and the AHC-1 cleaner and 4010 lubricating oil had the greatest influence on the Tg.展开更多
In addition to being used for pattern transfer,the negative photoresist SU-8 iswidely used as a structural material in microelectromechanical systems(MEMS).Due to its good photopatternability,SU-8 has lower manufactur...In addition to being used for pattern transfer,the negative photoresist SU-8 iswidely used as a structural material in microelectromechanical systems(MEMS).Due to its good photopatternability,SU-8 has lower manufacturing costs than many other materials,but its mechanical properties are relatively weak to some extent,which limits its performance.The mechanical properties of epoxy-like SU-8 can be enhanced by addingmicro-or nano-fillers such as carbon nanotube,clay,and SiC nanowire,which have superior elastic modulus.In this study,SiC nanowires were used to improve the mechanical properties of SU-8 while the SU-8 retains its photopatternability.The SiC nanowires were uniformly dispersed in SU-8 by stirring and ultrasonication.SU-8 materials with different SiC nanowire contents were fabricated into dog bone samples by lithography.The elastic modulus,storage modulus,and damping factor of the samples were measured by the Dynamic mechanical analysis(DMA)Q800.The experiment result shows that the rigidity and toughness increased,and the damping reduced.The 2 wt%SiC nanowires-reinforced SU-8 had a 73.88%increase in elastic modulus and a 103.4%increase in elongation at break.Furthermore,a spring component made by SiC-doped SU-8 could withstand greater acceleration.The SiC nanowires-reinforced SU-8 has the potential tomeet higher requirements in the design andmanufacture of MEMS and greatly reduce the manufacturing costs of MEMS devices.展开更多
The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of...The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles. Also the effects of accelerated thermal ageing on the composite properties have been investigated. Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder. The fracture toughness results showed a remarkable decrease in proportion to the HAP content. The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix. The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility. The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa). Finally, the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles. The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its nano composites crystallinity increased while the fracture toughness, hardness, wear resistance, storage and loss modulus decreased.展开更多
基金This study was supported by Introducing Foreign Advanced Technology Project (2001-1).
文摘Polyethylene octene elastomer (POE) as impact modifier was incorporated into wood/polypropylene composites (WPC) to enhance the impact strength of the composite. Two extruding routes, i.e. direct extruding route and two-stage extruding route, were adopted to produce Wood Powder/PP/POE ternary composites. The mechanical and dynamic mechanical analysis (DMA) properties of the composites were investigated. The results showed that the addition of POE can increase the impact strength of the composites, and the composites produced via two-stage extruding route showed superior mechanical properties. The results of the DMA confirmed the mechanical tests.
基金supported by the National Natural Science Foundation of China (Grant No. 30871966)
文摘Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.
基金Funded by the Commission of Science Technology and Industry for National Defense Technology Base Environmental Test and Observation Program(No.H052007A001)
文摘The aging properties of advanced composite T300/5405 which soaked in 15# hydraulic oil, 4010 lubricating oil, RP-3 kerosene and AHC-1 cleaner were studied. The absorption and mechanical properties of the composites were measured, and the scanning electron microscopy (SEIVO, dynamic mechanical analysis (DMA) and the infrared analysis (IR) were used to investigate the properties' changes of the composite. The aging mechanism of composite T300/5405 was also discussed. The experimental results show that the absorption of the composite in AHC-1 was the biggest, and the other three mediums had little effect on the composites. The mechanical properties declined in the aging. The composites have undergone chemical change in the test; Tg rose or declined atter the aging, and the AHC-1 cleaner and 4010 lubricating oil had the greatest influence on the Tg.
基金supports from the Shanghai Professional Technical Service Platform for Non-Silicon Micro-Nano Integrated ManufacturingProject funded by China Postdoctoral Science Foundation (No. 2018M630440)
文摘In addition to being used for pattern transfer,the negative photoresist SU-8 iswidely used as a structural material in microelectromechanical systems(MEMS).Due to its good photopatternability,SU-8 has lower manufacturing costs than many other materials,but its mechanical properties are relatively weak to some extent,which limits its performance.The mechanical properties of epoxy-like SU-8 can be enhanced by addingmicro-or nano-fillers such as carbon nanotube,clay,and SiC nanowire,which have superior elastic modulus.In this study,SiC nanowires were used to improve the mechanical properties of SU-8 while the SU-8 retains its photopatternability.The SiC nanowires were uniformly dispersed in SU-8 by stirring and ultrasonication.SU-8 materials with different SiC nanowire contents were fabricated into dog bone samples by lithography.The elastic modulus,storage modulus,and damping factor of the samples were measured by the Dynamic mechanical analysis(DMA)Q800.The experiment result shows that the rigidity and toughness increased,and the damping reduced.The 2 wt%SiC nanowires-reinforced SU-8 had a 73.88%increase in elastic modulus and a 103.4%increase in elongation at break.Furthermore,a spring component made by SiC-doped SU-8 could withstand greater acceleration.The SiC nanowires-reinforced SU-8 has the potential tomeet higher requirements in the design andmanufacture of MEMS and greatly reduce the manufacturing costs of MEMS devices.
基金the Deanship of Scientific Research at King Saud University for funding the work through the research group project No.RGP-VPP-133
文摘The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles. Also the effects of accelerated thermal ageing on the composite properties have been investigated. Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder. The fracture toughness results showed a remarkable decrease in proportion to the HAP content. The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix. The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility. The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa). Finally, the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles. The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its nano composites crystallinity increased while the fracture toughness, hardness, wear resistance, storage and loss modulus decreased.