Tomodel amultibody systemcomposed of shell components,a geometrically exact Kirchho-Love triangular shell element is proposed.The middle surface of the shell element is described by using the DMS-splines,which can ex...Tomodel amultibody systemcomposed of shell components,a geometrically exact Kirchho-Love triangular shell element is proposed.The middle surface of the shell element is described by using the DMS-splines,which can exactly represent arbitrary topology piecewise polynomial triangular surfaces.The proposed shell element employs only nodal displacement and can automatically maintain C1 continuity properties at the element boundaries.A reproducing DMS-spline kernel skill is also introduced to improve computation stability and accuracy.The proposed triangular shell element based on reproducing kernel DMS-splines can achieve an almost optimal convergent rate.Finally,the proposed shell element is validated via three static problems of shells and the dynamic simulation of aexible multibody system undergoing both overall motions and large deformations.展开更多
In this paper, we propose a novel free-form deformation (FFD) technique, RDMS-FFD (Rational DMS-FFD), based on rational DMS-spline volumes. RDMS-FFD inherits some good properties of rational DMS-spline volumes and...In this paper, we propose a novel free-form deformation (FFD) technique, RDMS-FFD (Rational DMS-FFD), based on rational DMS-spline volumes. RDMS-FFD inherits some good properties of rational DMS-spline volumes and combines more deformation techniques than previous FFD methods in a consistent framework, such as local deformation, control lattice of arbitrary topology, smooth deformation, multiresolution deformation and direct manipulation of deformation. We first introduce the rational DMS-spline volume by directly generalizing the previous results related to DMS-splines. How to generate a tetrahedral domain that approximates the shape of the object to be deformed is also introduced in this paper. Unlike the traditional FFD techniques, we manipulate the vertices of the tetrahedral domain to achieve deformation results. Our system demonstrates that RDMS-FFD is powerful and intuitive in geometric modeling.展开更多
基金supported in part by the National Natural Science Foundations of China under Grants 11290151,11672034 and 11902363。
文摘Tomodel amultibody systemcomposed of shell components,a geometrically exact Kirchho-Love triangular shell element is proposed.The middle surface of the shell element is described by using the DMS-splines,which can exactly represent arbitrary topology piecewise polynomial triangular surfaces.The proposed shell element employs only nodal displacement and can automatically maintain C1 continuity properties at the element boundaries.A reproducing DMS-spline kernel skill is also introduced to improve computation stability and accuracy.The proposed triangular shell element based on reproducing kernel DMS-splines can achieve an almost optimal convergent rate.Finally,the proposed shell element is validated via three static problems of shells and the dynamic simulation of aexible multibody system undergoing both overall motions and large deformations.
基金supported by the National Natural Science Foundation of China under Grant Nos. 60773179 and 60473130the National Basic Research 973 Program of China under Grant No. 2004CB318000
文摘In this paper, we propose a novel free-form deformation (FFD) technique, RDMS-FFD (Rational DMS-FFD), based on rational DMS-spline volumes. RDMS-FFD inherits some good properties of rational DMS-spline volumes and combines more deformation techniques than previous FFD methods in a consistent framework, such as local deformation, control lattice of arbitrary topology, smooth deformation, multiresolution deformation and direct manipulation of deformation. We first introduce the rational DMS-spline volume by directly generalizing the previous results related to DMS-splines. How to generate a tetrahedral domain that approximates the shape of the object to be deformed is also introduced in this paper. Unlike the traditional FFD techniques, we manipulate the vertices of the tetrahedral domain to achieve deformation results. Our system demonstrates that RDMS-FFD is powerful and intuitive in geometric modeling.