EREBP/AP2-type proteins are members of a large DNA binding protein (DBP) family found in plants. Some members like APETALA2 and AtDREB/CBF can regulate flower development and response to environmental stresses, respec...EREBP/AP2-type proteins are members of a large DNA binding protein (DBP) family found in plants. Some members like APETALA2 and AtDREB/CBF can regulate flower development and response to environmental stresses, respectively. To characterize transcription factors involved in plant responses to salt stress, we constructed cDNA library from salt-treated halophyte (Atriplex hortensis) and isolated a novel gene encoding EREBP/AP2-type protein from this library. This cDNA contained an ORF of 723 bp and a long 3'-Untranslated-Region (UTR) of 655 bp. The deduced amino acid sequence showed one conserved DNA binding domain of EREBP/AP2, thus the corresponding gene was named AhDREB1 with a calculated molecular mass of 26.1 kD. AhDREB1 under the control of CaMV 35S promoter was then transformed into tobacco and nine independent transgenic lines were obtained and subjected to long term salt stress. The results suggested that overexpression of AhDREB1 improved the salt tolerance in transgenic tobacco through functioning as a regulatory molecule in response to salt stress. Analysis of Arabidopsis genome in database resulted in dozens of EREBP/AP2-type homologous proteins, of which seven members showed high similarity to AhDREB1. Secondary structure analysis predicted similar arrangement of a-helix in their DNA binding domains.展开更多
Objective: To study the correlation of serum epithelial fatty acid binding protein (E-FABP) with glucose and lipid metabolism and micro inflammatory reaction in obese children. Methods: children diagnosed as simple ob...Objective: To study the correlation of serum epithelial fatty acid binding protein (E-FABP) with glucose and lipid metabolism and micro inflammatory reaction in obese children. Methods: children diagnosed as simple obesity in endocrinology department of my hospital during June 2014 – August 2017 were selected as the obese group, and the health examination children were selected as the control group. The serum was collected and the levels of E-FABP, glucose and lipid metabolism and inflammatory cytokines were determined, peripheral blood was collected and the expression level of insulin signal molecules were measured. Results:serum E-FABP content of obese group was significantly higher than that in the control group;serum total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), Leptin, Chemerin, F-INS, tumor necrosis factor - α (TNF-α), interleukin -1β (IL-β), interleukin-6 (IL-6), soluble intercellular adhesion molecule -1 (sICAM-1) and monocyte chemoattractant protein 1 (MCP1) of obese group were significantly higher than thosein the control group and positively correlated with serum E-FABP content;serum high density lipoprotein cholesterol (HDL-C), lipoprotein (APN), and C1q/tumor necrosis factor-related proteins 12 (CTRP12), Omentin-1 and the expression intensity of insulin receptor substrate 1 (IRS1), IRS2, glucose transporter -4 (GLUT-4) in peripheral blood were significantly lower than those of the control group and negatively correlated with serum E-FABP content. Conclusion: the excessive secretion of E-FABP in obese children is closely related to the disorder of glucose and lipid metabolism and the activation of micro inflammatory reaction.展开更多
A sensitive approach for the qualitative detection of DNA-binding protein on the microarray was developed. DNA complexes in which a partial duplex region is formed from a biotin-primer and a circle single strand DNA ...A sensitive approach for the qualitative detection of DNA-binding protein on the microarray was developed. DNA complexes in which a partial duplex region is formed from a biotin-primer and a circle single strand DNA (ssDNA) were spotted on a microarray. The endonuclease recognition site (ERS) and the DNA-binding sites (DBS) were arranged side by side within the duplex region. The working principle of the detection system is described as follows: when the DNA-binding protein capture the DBS, the endonuclease could not attach to the ERS, and the immobilized primer in the DNA complex could be extended along the circle ssDNA by rolling circle amplification (RCA). When no protein protects the DBS, the ERS could be attacked by the endonuclease and subsequently no rolling circle amplification occurs. Thereby we can detect the sequence specific DNA-binding activity with high-sensitivity due to the signal amplification of RCA.展开更多
Pancreatic cancer is one of the deadliest cancers with a very poor prognosis. Recently, there has been a significant increase in research directed towards identifying potential biomarkers that can be used to diagnose ...Pancreatic cancer is one of the deadliest cancers with a very poor prognosis. Recently, there has been a significant increase in research directed towards identifying potential biomarkers that can be used to diagnose and provide prognostic information for pancreatic cancer. These markers can be used clinically to optimize and personalize therapy for individual patients. In this review, we focused on 3 biomarkers involved in the DNA damage response pathway and the necroptosis pathway: Chromodomainhelicase-DNA binding protein 5, chromodomain-helicaseDNA binding protein 7, and mixed lineage kinase domain-like protein. The aim of this article is to review present literature provided for these biomarkers and current studies in which their effectiveness as prognostic biomarkers are analyzed in order to determine their future use as biomarkers in clinical medicine. Based on the data presented, these biomarkers warrant further investigation,and should be validated in future studies.展开更多
An ss-DNA gold chip was prepared based on self-assembly of the thiol-derivatized oligonucleotide, and used for the determination of single-stranded binding protein (SSB) by surface plasmon resonance microscopy (SPR...An ss-DNA gold chip was prepared based on self-assembly of the thiol-derivatized oligonucleotide, and used for the determination of single-stranded binding protein (SSB) by surface plasmon resonance microscopy (SPR). The experiment results showed that SSB binds ss-DNA with high specificity, and relative signal of SPR response is proportional to the concentration of SSB in the range of 0.1-100 ng/mL with a detection limit (S/N = 3) of 0.07 ng/mL.展开更多
The double-stranded DNA (dsDNA) probe contains two different protein binding sites. One is for DNA- binding proteins to be detected and the other is for a DNA restriction enzyme. The two sites were arranged together w...The double-stranded DNA (dsDNA) probe contains two different protein binding sites. One is for DNA- binding proteins to be detected and the other is for a DNA restriction enzyme. The two sites were arranged together with no base interval. The working principle of the capturing dsDNA probe is described as follows: the capturing probe can be cut with the DNA restriction enzyme (such as EcoR I) to cause a sticky terminal, if the probe is not bound with a target protein, and the sticky terminal can be extended and labeled with Cy3-dUTP by DNA polymerase. When the probe is bound with a target protein, the probe is not capable to be cut by the restriction enzyme because of space obstruction. The amount of the target DNA binding proteins can be measured according to the variations of fluorescent signals of the corresponding probes.展开更多
Endothelin-1 and a number of other genes expressd primarily in endothelial cells(EC)require a functional GATA element in their promoter region.The widely expressed zinc finger DNA binding protein GATA-2 has been chara...Endothelin-1 and a number of other genes expressd primarily in endothelial cells(EC)require a functional GATA element in their promoter region.The widely expressed zinc finger DNA binding protein GATA-2 has been characterized as the likely GATA factor which binds these GATA elements.To understand the specificity of this interaction,and to investigate the potential for regulation of GATA-2 activity,we have studied translation and post-translational modification of the GATA-2 protein. A specific antiserum immunoprecipitated a 52kDa GATA-2 protein from [35-S] methionine-labeled EC,as well as a wide variety of cultured human cell lines which express GATA-2 mRNA. Immunoprecipitation experiments with [32-P]-orthophosphate labeled cells indicated that GATA-2 is similarly phosphorylated in EC and non-EC lines. Thus the apparent cell-specific activity of this transcription factor is not regulated by translation or phosphorylation, and must derive from the interaction of GATA-2 with other nuclear proteins in the EC.Further studies investigated the potential regulation of GATA-2 phosphorylation in EC. Phosphoamino acid analysis indicated that GATA-2 is phosphorylated on serine and threonine residues in EC.The hasal phosphorylation of GATA-2 was rapidly and markedly increased when EC were treated with calcium ionophore A23187, while phorbol ester and forskolin had no effect.Phosphopeptide map analysis showed that A23187 induced phosphorylation of at least two additional sites in GATA-2.Gel shift assays employing nuclear extracts isolated from EC that had been treated with A23187 had a different DNA binding pattern when compared to control.This regulated phosphorylation of GATA-2 may provide a signaling pathway for hormonal regulation of endothelial cell genes such as endothelin-1 which alter their rate of transcription in response to increased intracellular calcium.展开更多
Environmental control of the alcohol dehydrogenase(Adh)and other stress response genes in plants is in part brought about by transcriptional regulation involving the G-box cis-acting DNA element and bZIP G-box Binding...Environmental control of the alcohol dehydrogenase(Adh)and other stress response genes in plants is in part brought about by transcriptional regulation involving the G-box cis-acting DNA element and bZIP G-box Binding Factors(GBFs).The mechanisms of GBF regulation and requirements for additional factors in this control process are not well understood.In an effort to identify potential GBF binding and control partners,maize GBF1 was used as bait in a yeast two-hybrid screen of an A.thaliana cDNA library.GBF Interacting Protein 1(GIP1)arose from the screen as a 496 amino acid protein with a predicted molecular weight of 53,748 kDa that strongly interacts with GBFs.Northern analysis of A.thaliana tissue suggests a 1.8-1.9 kb GIP1 transcript,predominantly in roots.Immunolocalization studies indicate that GIP1 protein is mainly localized to the nucleus.In vitro electrophoretic mobility shift assays using an Adh G-box DNA probe and recombinant A.thaliana GBF3 or maize GBF1,showed that the presence of GIP1 resulted in a tenfold increase in GBF DNA binding activity without altering the migration,suggesting a transient association between GIP1 and GBF.Addition of GIP1 to intentionally aggregated GBF converted GBF to lower molecular weight macromolecular complexes and GIP1 also refolded denatured rhodanese in the absence of ATP.These data suggest GIP1 functions to enhance GBF DNA binding activity by acting as a potent nuclear chaperone or crowbar,and potentially regulates the multimeric state of GBFs,thereby contributing to bZIP-mediated gene regulation.展开更多
Objective: We have previously found that mbr is a regulatory element of the bcl2 gene. The objective of this study is to isolate and identify the proteins binding to the 37 mbr in the 3 ' -end of the mbr. Methods: ...Objective: We have previously found that mbr is a regulatory element of the bcl2 gene. The objective of this study is to isolate and identify the proteins binding to the 37 mbr in the 3 ' -end of the mbr. Methods: Streptavidin magnetic particles were ligated to concatameric oligonucleotides of 37 mbr and incubated with the nuclear extracts of Jurkat cells. The DNA-binding proteins were eluted and then resolved by SDS-PAGE. After silver staining, the protein bands were excised and subjected to MALDI-TOF MS. Results: Several protein bands were detected after the isolation with magnetic particles, and Splicing factor, proline- and glutamine-rich(SFPQ), Poly(ADP-ribose) polymerase I(PARP), and promyelocytic leukemia protein(PML) were identified by MALDI-TOF MS. Conclusion: Several proteins were isolated and identified from the 37 mbr-protein complex. Results of this study establish a foundation for further study of the mechanisms by which mbr executes its regulatory function.展开更多
GATA-6 mRNA utilizes two Met-codons in frame as translational initiation codons in cultured mammalian cells. Deletion of the nucleotide sequence encoding the PEST sequence between the two initiation codons unusually r...GATA-6 mRNA utilizes two Met-codons in frame as translational initiation codons in cultured mammalian cells. Deletion of the nucleotide sequence encoding the PEST sequence between the two initiation codons unusually reduced the protein molecular size on SDS-polyacrylamide gel-electrophoresis. The reduced molecular size is ascribed to the molecular property of GATA-6, since both amino-and carboxy-lterminal tags introduced into GATA-6 were detected on the gel. This PEST sequence seems to contribute to expansion of the long-type GATA-6 molecule. The long-type GATA-6 containing the PEST sequence exhibits more activation potential than that without this sequence, the latter’s activity being similar to that of the short-type GATA-6. We further demonstrated that human colon and lung cancer cell lines express both the long-type GATA-6 and the short-type GATA-6 in their nuclei.展开更多
The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5′-triphosphate(ATP) to generate visual signal ...The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5′-triphosphate(ATP) to generate visual signal and transmit the information to the brain. Disruptions in retinal metabolism can cause neuronal dysfunction and degeneration resulting in severe visual impairment and even blindness. The homeostasis of retinal metabolism is tightly controlled by multiple signaling pathways, such as the unfolded protein response(UPR), and the close interactions between retinal neurons and other retinal cell types including vascular cells and Müller glia. The UPR is a highly conserved adaptive cellular response and can be triggered by many physiological stressors and pathophysiological conditions. Activation of the UPR leads to changes in glycolytic rate, ATP production, de novo serine synthesis, and the hexosamine biosynthetic pathway, which are considered critical components of Müller glia metabolism and provide metabolic support to surrounding neurons. When these pathways are disrupted, neurodegeneration occurs rapidly. In this review, we summarize recent advance in studies of the UPR in Müller glia and highlight the potential role of the UPR in retinal degeneration through regulation of Müller glia metabolism.展开更多
BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),particularly in the presence of liver fibrosis,increases the risk of cardiovascular morbidity and mortality,but the nature of the cardio-hepat...BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),particularly in the presence of liver fibrosis,increases the risk of cardiovascular morbidity and mortality,but the nature of the cardio-hepatic interaction in the context type 2 diabetes mellitus(T2DM)is not fully understood.AIM To evaluate the changes in cardiac morphology and function in patients with T2DM and MASLD-associated liver fibrosis.METHODS T2DM patients with MASLD underwent a medical evaluation that included an assessment of lifestyle,anthropometric measurements,vital signs,an extensive laboratory panel,and a standard echocardiography.Liver fibrosis was evaluated using two scores[Fibrosis-4(FIB4)and Non-alcoholic fatty liver disease-Fibrosis Score(NFS)],and subjects were classified as having advanced fibrosis,no fibrosis,or an indeterminate risk.The correlations between structural and functional cardiac parameters and markers of liver fibrosis were evaluated through bivariate and multiple regression analyses.Statistical significance was set at P<0.05.RESULTS Data from 267 T2DM-MASLD subjects with complete assessment was analyzed.Patients with scores indicating advanced fibrosis exhibited higher interventricular septum and left ventricular(LV)posterior wall thickness,atrial diameters,LV end-systolic volume,LV mass index(LVMi),and epicardial adipose tissue thickness(EATT).Their mean ejection fraction(EF)was significantly lower(49.19%±5.62%vs 50.87%±5.14%vs 52.00%±3.25%;P=0.003),and a smaller proportion had an EF≥50%(49.40%vs 68.90%vs 84.21%;P=0.0017).Their total and mid LV wall motion score indexes were higher(P<0.05).Additionally,they had markers of diastolic dysfunction,with a higher E/e’ratio[9.64±4.10 vs 8.44(2.43-26.33)vs 7.35±2.62;P=0.026],and over 70%had lateral e’values<10 cm/second,though without significant differences between groups.In multiple regression analyses,FIB4 correlated with left atrium diameter(LAD;β=0.044;P<0.05),and NFS with both LAD(β=0.039;P<0.05)and right atrium diameter(β=0.041;P<0.01),Moreover,LVMi correlated positively with age and EATT(β=1.997;P=0.0008),and negatively with serum sex-hormone binding protein(SHBP)concentrations(β=-0.280;P=0.004).SHBP also correlated negatively with LAD(β=-0.036;P<0.05).CONCLUSION T2DM patients with markers of MASLD-related liver fibrosis exhibit lower EF and present indicators of diastolic dysfunction and cardiac hypertrophy.Additionally,LVMi and LAD correlated negatively with serum SHBP concentrations.展开更多
This paper describes an approach to seek for mouse c-Myc/Myn proteins-bound specific sequences among ge-nomic DNA. cDNA fragment of myn gene was obtained through RT-PCR technique from RNA of NIH3T3 cells. DNA fragment...This paper describes an approach to seek for mouse c-Myc/Myn proteins-bound specific sequences among ge-nomic DNA. cDNA fragment of myn gene was obtained through RT-PCR technique from RNA of NIH3T3 cells. DNA fragments encoding BR/HLH/LZ structure of Myc and Myn proteins were cloned in frame into pGEX-2T vec-tor respectively Fusion GST-Myc and GST-Myn synthe-sized in E.coli hosts showed affinity to CACGTG E-boxDNA and subsequently interacted with genomic fragments prepared through whole-genome-PCR. A PCR-assisted procedure which combines protein-DNA interaction and affinity chromatography was designed to enrich Myc/Myn bound DNA. At least two genomic DNA fragments ob- tained exhibit specifical binding capacity to Myc/Myn complex but not to GST alone. Significance of the work and of the technique itself as well as identification of the DNAs are discussed.展开更多
We conducted genome sequence analysis to examine the presence/absence of two types of Z-DNA binding domains in various organisms. We examined 68 organisms from archaea, 914 organisms from bacteria, and 199 organisms f...We conducted genome sequence analysis to examine the presence/absence of two types of Z-DNA binding domains in various organisms. We examined 68 organisms from archaea, 914 organisms from bacteria, and 199 organisms from eukaryotes. RecA protein from Escherichia coli has a Z-DNA binding domain and this protein promotes homologous recombination. All the organisms examined had this domain. This result indicated that this domain is essential for all the organisms. RNA editing enzyme, adenosine deaminase from human has another type of Z-DNA binding domain. This domain was observed in some organisms of archaea, bacteria, and eukaryotes. The presence/absence of Z-DNA binding domain in adenosine deaminase indicated that gain and loss of this domain had occurred in the process of evolution. The implication of presence and absence of this domain is discussed in this study.展开更多
Targeted protein degradation(TPD)holds great promise for biological inquiry and therapeutic development.However,it still remains elusive to destruct DNA/RNA binding proteins(DBPs/RBPs)previously deemed undruggable.Her...Targeted protein degradation(TPD)holds great promise for biological inquiry and therapeutic development.However,it still remains elusive to destruct DNA/RNA binding proteins(DBPs/RBPs)previously deemed undruggable.Herein,we report ligandassisted covalent hydrophobic tagging(LACHT)as a modular strategy for TPD of these difficult-totarget proteins.Guided by a noncovalent protein ligand,LACHT leverages a reactive N-acyl-N-alkyl sulfonamide group to covalently label the protein target with a hydrophobic adamantane,which further engages the cellular quality control mechanism to induce proteolytic degradation.Using a smallmolecule ligand,we demonstrated that LACHT allowed TPD of a DBP,bromodomain-containing protein 4,in human leukemia cells with high efficiency.Mechanistic studies revealed that LACHT-mediated TPD dependent on ligand-directed irreversible tagging and the covalently labeled proteins underwent polyubiquitination before removal through both the proteasome and the lysosome.Furthermore,when an RNA ligand was employed,we showed that LACHT also enabled TPD of an RBP,Lin28a,leading to upregulation of its downstream let-7 miRNA.This study thus provides a generalizable platform to expand the TPD toolbox for biomedical applications.展开更多
PDRG1 is a small oncogenic protein of 133 residues. In normal human tissues, the p53 and DNA damageregulated gene 1(PDRG1) gene exhibits maximal expression in the testis and minimal levels in the liver. Increased expr...PDRG1 is a small oncogenic protein of 133 residues. In normal human tissues, the p53 and DNA damageregulated gene 1(PDRG1) gene exhibits maximal expression in the testis and minimal levels in the liver. Increased expression has been detected in several tumor cells and in response to genotoxic stress. High-throughput studies identified the PDRG1 protein in a variety of macromolecular complexes involved in processes that are altered in cancer cells. For example, this oncogene has been found as part of the RNA polymerase Ⅱ complex, the splicing machinery and nutrient sensing machinery, although its role in these complexes remains unclear. More recently, the PDRG1 protein was found as an interaction target for the catalytic subunits of methionine adenosyltransferases. These enzymes synthesize S-adenosylmethionine, the methyl donor for, among others, epigenetic methylations that occur on the DNA and histones. In fact, downregulation of S-adenosylmethionine synthesis is the first functional effect directly ascribed to PDRG1. The existence of global DNA hypomethylation, together with increased PDRG1 expression, in many tumor cells highlights the importance of this interaction as one of the putative underlying causes for cell transformation. Here, we will review the accumulated knowledge on this oncogene, emphasizing the numerous aspects that remain to be explored.展开更多
Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur(TG)amyotrophic lateral sclerosis mouse model.However,most studies have only examined heterogenous nuclear ribonucl...Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur(TG)amyotrophic lateral sclerosis mouse model.However,most studies have only examined heterogenous nuclear ribonucleoprotein G expression in the amyotrophic lateral sclerosis model and heterogenous nuclear ribonucleoprotein G effects in amyotrophic lateral sclerosis pathogenesis such as in apoptosis are unknown.In this study,we studied the potential mechanism of heterogenous nuclear ribonucleoprotein G in neuronal death in the spinal cord of TG and wild-type mice and examined the mechanism by which heterogenous nuclear ribonucleoprotein G induces apoptosis.Heterogenous nuclear ribonucleoprotein G in spinal cord was analyzed using immunohistochemistry and western blotting,and cell proliferation and proteins(TAR DNA binding protein 43,superoxide dismutase 1,and Bax)were detected by the Cell Counting Kit-8 and western blot analysis in heterogenous nuclear ribonucleoprotein G siRNA-transfected PC12 cells.We analyzed heterogenous nuclear ribonucleoprotein G distribution in spinal cord in the amyotrophic lateral sclerosis model at various time points and the expressions of apoptosis and proliferation-related proteins.Heterogenous nuclear ribonucleoprotein G was mainly localized in neurons.Amyotrophic lateral sclerosis mice were examined at three stages:preonset(60-70 days),onset(90-100 days)and progression(120-130 days).The number of heterogenous nuclear ribonucleoprotein G-positive cells was significantly higher in the anterior horn of the lumbar spinal cord segment of TG mice at the preonset stage than that of control group but lower than that of the control group at the onset stage.The number of heterogenous nuclear ribonucleoprotein G-positive cells in both central canal and surrounding gray matter of the whole spinal cord of TG mice at the onset stage was significantly lower than that in the control group,whereas that of the lumbar spinal cord segment of TG mice was significantly higher than that in the control group at preonset stage and significantly lower than that in the control group at the progression stage.The numbers of heterogenous nuclear ribonucleoprotein G-positive cells in the posterior horn of cervical and thoracic segments of TG mice at preonset and progression stages were significantly lower than those in the control group.The expression of heterogenous nuclear ribonucleoprotein G in the cervical spinal cord segment of TG mice was significantly higher than that in the control group at the preonset stage but significantly lower at the progression stage.The expression of heterogenous nuclear ribonucleoprotein G in the thoracic spinal cord segment of TG mice was significantly increased at the preonset stage,significantly decreased at the onset stage,and significantly increased at the progression stage compared with the control group.heterogenous nuclear ribonucleoprotein G expression in the lumbar spinal cord segment of TG mice was significantly lower than that of the control group at the progression stage.After heterogenous nuclear ribonucleoprotein G gene silencing,PC12 cell survival was lower than that of control cells.Both TAR DNA binding protein 43 and Bax expressions were significantly increased in heterogenous nuclear ribonucleoprotein G-silenced cells compared with control cells.Our study suggests that abnormal distribution and expression of heterogenous nuclear ribonucleoprotein G might play a protective effect in amyotrophic lateral sclerosis development via preventing neuronal death by reducing abnormal TAR DNA binding protein 43 generation in the spinal cord.展开更多
The internal region of bacterial translocatable IS1 acts as a cis-element to stimulate transcription from the various promoters located upstream. The product of the artA gene is genetically shown to stimulate transcri...The internal region of bacterial translocatable IS1 acts as a cis-element to stimulate transcription from the various promoters located upstream. The product of the artA gene is genetically shown to stimulate transcription with the cis-element. Here, a codon-optimized artA gene was synthesized and cloned to express the ArtA protein. ArtA was purified as the Histagged protein. Nitrocellulose filter binding assay showed that ArtA specifically binds to the IS1 internal region. Electrophoretic mobility shift assay also showed specific binding of ArtA to the IS1 internal region. These results imply that ArtA directly binds to the IS1 internal region and stimulates transcription.展开更多
文摘EREBP/AP2-type proteins are members of a large DNA binding protein (DBP) family found in plants. Some members like APETALA2 and AtDREB/CBF can regulate flower development and response to environmental stresses, respectively. To characterize transcription factors involved in plant responses to salt stress, we constructed cDNA library from salt-treated halophyte (Atriplex hortensis) and isolated a novel gene encoding EREBP/AP2-type protein from this library. This cDNA contained an ORF of 723 bp and a long 3'-Untranslated-Region (UTR) of 655 bp. The deduced amino acid sequence showed one conserved DNA binding domain of EREBP/AP2, thus the corresponding gene was named AhDREB1 with a calculated molecular mass of 26.1 kD. AhDREB1 under the control of CaMV 35S promoter was then transformed into tobacco and nine independent transgenic lines were obtained and subjected to long term salt stress. The results suggested that overexpression of AhDREB1 improved the salt tolerance in transgenic tobacco through functioning as a regulatory molecule in response to salt stress. Analysis of Arabidopsis genome in database resulted in dozens of EREBP/AP2-type homologous proteins, of which seven members showed high similarity to AhDREB1. Secondary structure analysis predicted similar arrangement of a-helix in their DNA binding domains.
基金Natural Science Foundation of Hubei Province.Project No:2016CFB368.
文摘Objective: To study the correlation of serum epithelial fatty acid binding protein (E-FABP) with glucose and lipid metabolism and micro inflammatory reaction in obese children. Methods: children diagnosed as simple obesity in endocrinology department of my hospital during June 2014 – August 2017 were selected as the obese group, and the health examination children were selected as the control group. The serum was collected and the levels of E-FABP, glucose and lipid metabolism and inflammatory cytokines were determined, peripheral blood was collected and the expression level of insulin signal molecules were measured. Results:serum E-FABP content of obese group was significantly higher than that in the control group;serum total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), Leptin, Chemerin, F-INS, tumor necrosis factor - α (TNF-α), interleukin -1β (IL-β), interleukin-6 (IL-6), soluble intercellular adhesion molecule -1 (sICAM-1) and monocyte chemoattractant protein 1 (MCP1) of obese group were significantly higher than thosein the control group and positively correlated with serum E-FABP content;serum high density lipoprotein cholesterol (HDL-C), lipoprotein (APN), and C1q/tumor necrosis factor-related proteins 12 (CTRP12), Omentin-1 and the expression intensity of insulin receptor substrate 1 (IRS1), IRS2, glucose transporter -4 (GLUT-4) in peripheral blood were significantly lower than those of the control group and negatively correlated with serum E-FABP content. Conclusion: the excessive secretion of E-FABP in obese children is closely related to the disorder of glucose and lipid metabolism and the activation of micro inflammatory reaction.
基金supported by the National Natural Science Foundation of China(Nos.60501010,60701008 and 60771024)
文摘A sensitive approach for the qualitative detection of DNA-binding protein on the microarray was developed. DNA complexes in which a partial duplex region is formed from a biotin-primer and a circle single strand DNA (ssDNA) were spotted on a microarray. The endonuclease recognition site (ERS) and the DNA-binding sites (DBS) were arranged side by side within the duplex region. The working principle of the detection system is described as follows: when the DNA-binding protein capture the DBS, the endonuclease could not attach to the ERS, and the immobilized primer in the DNA complex could be extended along the circle ssDNA by rolling circle amplification (RCA). When no protein protects the DBS, the ERS could be attacked by the endonuclease and subsequently no rolling circle amplification occurs. Thereby we can detect the sequence specific DNA-binding activity with high-sensitivity due to the signal amplification of RCA.
基金Supported by The National Center for Advancing Translational Sciences of the National Institutes of Health under award numbers ULl TR000454 previously awarded to Dr.Colbert and Dr.Fisher and TLlT R000456 to Dr.ColbertPancreatic Cancer Action Network(Pan-CAN)&sol American Association for Cancer Research(AACR)award 16982+1 种基金Department of Defense(DOD)/Peer Reviewed Cancer Research Program(PRCRP)award CA110535Georgia Cancer Coalition award 11072,all to Dr.Yu
文摘Pancreatic cancer is one of the deadliest cancers with a very poor prognosis. Recently, there has been a significant increase in research directed towards identifying potential biomarkers that can be used to diagnose and provide prognostic information for pancreatic cancer. These markers can be used clinically to optimize and personalize therapy for individual patients. In this review, we focused on 3 biomarkers involved in the DNA damage response pathway and the necroptosis pathway: Chromodomainhelicase-DNA binding protein 5, chromodomain-helicaseDNA binding protein 7, and mixed lineage kinase domain-like protein. The aim of this article is to review present literature provided for these biomarkers and current studies in which their effectiveness as prognostic biomarkers are analyzed in order to determine their future use as biomarkers in clinical medicine. Based on the data presented, these biomarkers warrant further investigation,and should be validated in future studies.
基金the Science Foundation of the National Education Ministry (No, 206096) the Education Department of Hubei Province (No. Z200522002).
文摘An ss-DNA gold chip was prepared based on self-assembly of the thiol-derivatized oligonucleotide, and used for the determination of single-stranded binding protein (SSB) by surface plasmon resonance microscopy (SPR). The experiment results showed that SSB binds ss-DNA with high specificity, and relative signal of SPR response is proportional to the concentration of SSB in the range of 0.1-100 ng/mL with a detection limit (S/N = 3) of 0.07 ng/mL.
文摘The double-stranded DNA (dsDNA) probe contains two different protein binding sites. One is for DNA- binding proteins to be detected and the other is for a DNA restriction enzyme. The two sites were arranged together with no base interval. The working principle of the capturing dsDNA probe is described as follows: the capturing probe can be cut with the DNA restriction enzyme (such as EcoR I) to cause a sticky terminal, if the probe is not bound with a target protein, and the sticky terminal can be extended and labeled with Cy3-dUTP by DNA polymerase. When the probe is bound with a target protein, the probe is not capable to be cut by the restriction enzyme because of space obstruction. The amount of the target DNA binding proteins can be measured according to the variations of fluorescent signals of the corresponding probes.
文摘Endothelin-1 and a number of other genes expressd primarily in endothelial cells(EC)require a functional GATA element in their promoter region.The widely expressed zinc finger DNA binding protein GATA-2 has been characterized as the likely GATA factor which binds these GATA elements.To understand the specificity of this interaction,and to investigate the potential for regulation of GATA-2 activity,we have studied translation and post-translational modification of the GATA-2 protein. A specific antiserum immunoprecipitated a 52kDa GATA-2 protein from [35-S] methionine-labeled EC,as well as a wide variety of cultured human cell lines which express GATA-2 mRNA. Immunoprecipitation experiments with [32-P]-orthophosphate labeled cells indicated that GATA-2 is similarly phosphorylated in EC and non-EC lines. Thus the apparent cell-specific activity of this transcription factor is not regulated by translation or phosphorylation, and must derive from the interaction of GATA-2 with other nuclear proteins in the EC.Further studies investigated the potential regulation of GATA-2 phosphorylation in EC. Phosphoamino acid analysis indicated that GATA-2 is phosphorylated on serine and threonine residues in EC.The hasal phosphorylation of GATA-2 was rapidly and markedly increased when EC were treated with calcium ionophore A23187, while phorbol ester and forskolin had no effect.Phosphopeptide map analysis showed that A23187 induced phosphorylation of at least two additional sites in GATA-2.Gel shift assays employing nuclear extracts isolated from EC that had been treated with A23187 had a different DNA binding pattern when compared to control.This regulated phosphorylation of GATA-2 may provide a signaling pathway for hormonal regulation of endothelial cell genes such as endothelin-1 which alter their rate of transcription in response to increased intracellular calcium.
基金This research was supported by the U S Department of Agriculture Grants 00-35304-96Ol and 98-35301-6083.
文摘Environmental control of the alcohol dehydrogenase(Adh)and other stress response genes in plants is in part brought about by transcriptional regulation involving the G-box cis-acting DNA element and bZIP G-box Binding Factors(GBFs).The mechanisms of GBF regulation and requirements for additional factors in this control process are not well understood.In an effort to identify potential GBF binding and control partners,maize GBF1 was used as bait in a yeast two-hybrid screen of an A.thaliana cDNA library.GBF Interacting Protein 1(GIP1)arose from the screen as a 496 amino acid protein with a predicted molecular weight of 53,748 kDa that strongly interacts with GBFs.Northern analysis of A.thaliana tissue suggests a 1.8-1.9 kb GIP1 transcript,predominantly in roots.Immunolocalization studies indicate that GIP1 protein is mainly localized to the nucleus.In vitro electrophoretic mobility shift assays using an Adh G-box DNA probe and recombinant A.thaliana GBF3 or maize GBF1,showed that the presence of GIP1 resulted in a tenfold increase in GBF DNA binding activity without altering the migration,suggesting a transient association between GIP1 and GBF.Addition of GIP1 to intentionally aggregated GBF converted GBF to lower molecular weight macromolecular complexes and GIP1 also refolded denatured rhodanese in the absence of ATP.These data suggest GIP1 functions to enhance GBF DNA binding activity by acting as a potent nuclear chaperone or crowbar,and potentially regulates the multimeric state of GBFs,thereby contributing to bZIP-mediated gene regulation.
基金supported by grants from the National Natural Science Foundation of China(30500585)the Natural Science Foundation of Jiangsu Province(BK2008450)
文摘Objective: We have previously found that mbr is a regulatory element of the bcl2 gene. The objective of this study is to isolate and identify the proteins binding to the 37 mbr in the 3 ' -end of the mbr. Methods: Streptavidin magnetic particles were ligated to concatameric oligonucleotides of 37 mbr and incubated with the nuclear extracts of Jurkat cells. The DNA-binding proteins were eluted and then resolved by SDS-PAGE. After silver staining, the protein bands were excised and subjected to MALDI-TOF MS. Results: Several protein bands were detected after the isolation with magnetic particles, and Splicing factor, proline- and glutamine-rich(SFPQ), Poly(ADP-ribose) polymerase I(PARP), and promyelocytic leukemia protein(PML) were identified by MALDI-TOF MS. Conclusion: Several proteins were isolated and identified from the 37 mbr-protein complex. Results of this study establish a foundation for further study of the mechanisms by which mbr executes its regulatory function.
文摘GATA-6 mRNA utilizes two Met-codons in frame as translational initiation codons in cultured mammalian cells. Deletion of the nucleotide sequence encoding the PEST sequence between the two initiation codons unusually reduced the protein molecular size on SDS-polyacrylamide gel-electrophoresis. The reduced molecular size is ascribed to the molecular property of GATA-6, since both amino-and carboxy-lterminal tags introduced into GATA-6 were detected on the gel. This PEST sequence seems to contribute to expansion of the long-type GATA-6 molecule. The long-type GATA-6 containing the PEST sequence exhibits more activation potential than that without this sequence, the latter’s activity being similar to that of the short-type GATA-6. We further demonstrated that human colon and lung cancer cell lines express both the long-type GATA-6 and the short-type GATA-6 in their nuclei.
基金supported,in part,by NIH/NEI grants EY019949 and EY025061an Unrestricted Grant to the Department of Ophthalmology,SUNY-Buffalo,from Research to Prevent Blindness
文摘The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5′-triphosphate(ATP) to generate visual signal and transmit the information to the brain. Disruptions in retinal metabolism can cause neuronal dysfunction and degeneration resulting in severe visual impairment and even blindness. The homeostasis of retinal metabolism is tightly controlled by multiple signaling pathways, such as the unfolded protein response(UPR), and the close interactions between retinal neurons and other retinal cell types including vascular cells and Müller glia. The UPR is a highly conserved adaptive cellular response and can be triggered by many physiological stressors and pathophysiological conditions. Activation of the UPR leads to changes in glycolytic rate, ATP production, de novo serine synthesis, and the hexosamine biosynthetic pathway, which are considered critical components of Müller glia metabolism and provide metabolic support to surrounding neurons. When these pathways are disrupted, neurodegeneration occurs rapidly. In this review, we summarize recent advance in studies of the UPR in Müller glia and highlight the potential role of the UPR in retinal degeneration through regulation of Müller glia metabolism.
基金Supported by the University of Medicine,Pharmacy,Science and Technology“George Emil Palade”of Târgu MureșResearch Grant,No.10126/5/17.12.2020.
文摘BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),particularly in the presence of liver fibrosis,increases the risk of cardiovascular morbidity and mortality,but the nature of the cardio-hepatic interaction in the context type 2 diabetes mellitus(T2DM)is not fully understood.AIM To evaluate the changes in cardiac morphology and function in patients with T2DM and MASLD-associated liver fibrosis.METHODS T2DM patients with MASLD underwent a medical evaluation that included an assessment of lifestyle,anthropometric measurements,vital signs,an extensive laboratory panel,and a standard echocardiography.Liver fibrosis was evaluated using two scores[Fibrosis-4(FIB4)and Non-alcoholic fatty liver disease-Fibrosis Score(NFS)],and subjects were classified as having advanced fibrosis,no fibrosis,or an indeterminate risk.The correlations between structural and functional cardiac parameters and markers of liver fibrosis were evaluated through bivariate and multiple regression analyses.Statistical significance was set at P<0.05.RESULTS Data from 267 T2DM-MASLD subjects with complete assessment was analyzed.Patients with scores indicating advanced fibrosis exhibited higher interventricular septum and left ventricular(LV)posterior wall thickness,atrial diameters,LV end-systolic volume,LV mass index(LVMi),and epicardial adipose tissue thickness(EATT).Their mean ejection fraction(EF)was significantly lower(49.19%±5.62%vs 50.87%±5.14%vs 52.00%±3.25%;P=0.003),and a smaller proportion had an EF≥50%(49.40%vs 68.90%vs 84.21%;P=0.0017).Their total and mid LV wall motion score indexes were higher(P<0.05).Additionally,they had markers of diastolic dysfunction,with a higher E/e’ratio[9.64±4.10 vs 8.44(2.43-26.33)vs 7.35±2.62;P=0.026],and over 70%had lateral e’values<10 cm/second,though without significant differences between groups.In multiple regression analyses,FIB4 correlated with left atrium diameter(LAD;β=0.044;P<0.05),and NFS with both LAD(β=0.039;P<0.05)and right atrium diameter(β=0.041;P<0.01),Moreover,LVMi correlated positively with age and EATT(β=1.997;P=0.0008),and negatively with serum sex-hormone binding protein(SHBP)concentrations(β=-0.280;P=0.004).SHBP also correlated negatively with LAD(β=-0.036;P<0.05).CONCLUSION T2DM patients with markers of MASLD-related liver fibrosis exhibit lower EF and present indicators of diastolic dysfunction and cardiac hypertrophy.Additionally,LVMi and LAD correlated negatively with serum SHBP concentrations.
文摘This paper describes an approach to seek for mouse c-Myc/Myn proteins-bound specific sequences among ge-nomic DNA. cDNA fragment of myn gene was obtained through RT-PCR technique from RNA of NIH3T3 cells. DNA fragments encoding BR/HLH/LZ structure of Myc and Myn proteins were cloned in frame into pGEX-2T vec-tor respectively Fusion GST-Myc and GST-Myn synthe-sized in E.coli hosts showed affinity to CACGTG E-boxDNA and subsequently interacted with genomic fragments prepared through whole-genome-PCR. A PCR-assisted procedure which combines protein-DNA interaction and affinity chromatography was designed to enrich Myc/Myn bound DNA. At least two genomic DNA fragments ob- tained exhibit specifical binding capacity to Myc/Myn complex but not to GST alone. Significance of the work and of the technique itself as well as identification of the DNAs are discussed.
文摘We conducted genome sequence analysis to examine the presence/absence of two types of Z-DNA binding domains in various organisms. We examined 68 organisms from archaea, 914 organisms from bacteria, and 199 organisms from eukaryotes. RecA protein from Escherichia coli has a Z-DNA binding domain and this protein promotes homologous recombination. All the organisms examined had this domain. This result indicated that this domain is essential for all the organisms. RNA editing enzyme, adenosine deaminase from human has another type of Z-DNA binding domain. This domain was observed in some organisms of archaea, bacteria, and eukaryotes. The presence/absence of Z-DNA binding domain in adenosine deaminase indicated that gain and loss of this domain had occurred in the process of evolution. The implication of presence and absence of this domain is discussed in this study.
基金supported by the Natural Science Foundation of Jiangsu Province(grant nos.BK20202004 and BE2022835)the National Natural Science Foundation of China(grant nos.22077063,22225703,22137003,21877058,and 21977043).
文摘Targeted protein degradation(TPD)holds great promise for biological inquiry and therapeutic development.However,it still remains elusive to destruct DNA/RNA binding proteins(DBPs/RBPs)previously deemed undruggable.Herein,we report ligandassisted covalent hydrophobic tagging(LACHT)as a modular strategy for TPD of these difficult-totarget proteins.Guided by a noncovalent protein ligand,LACHT leverages a reactive N-acyl-N-alkyl sulfonamide group to covalently label the protein target with a hydrophobic adamantane,which further engages the cellular quality control mechanism to induce proteolytic degradation.Using a smallmolecule ligand,we demonstrated that LACHT allowed TPD of a DBP,bromodomain-containing protein 4,in human leukemia cells with high efficiency.Mechanistic studies revealed that LACHT-mediated TPD dependent on ligand-directed irreversible tagging and the covalently labeled proteins underwent polyubiquitination before removal through both the proteasome and the lysosome.Furthermore,when an RNA ligand was employed,we showed that LACHT also enabled TPD of an RBP,Lin28a,leading to upregulation of its downstream let-7 miRNA.This study thus provides a generalizable platform to expand the TPD toolbox for biomedical applications.
基金support by the Ministerio Educación y CienciaMinisterio de Economía y Competitividad of Spain(until June 2013)
文摘PDRG1 is a small oncogenic protein of 133 residues. In normal human tissues, the p53 and DNA damageregulated gene 1(PDRG1) gene exhibits maximal expression in the testis and minimal levels in the liver. Increased expression has been detected in several tumor cells and in response to genotoxic stress. High-throughput studies identified the PDRG1 protein in a variety of macromolecular complexes involved in processes that are altered in cancer cells. For example, this oncogene has been found as part of the RNA polymerase Ⅱ complex, the splicing machinery and nutrient sensing machinery, although its role in these complexes remains unclear. More recently, the PDRG1 protein was found as an interaction target for the catalytic subunits of methionine adenosyltransferases. These enzymes synthesize S-adenosylmethionine, the methyl donor for, among others, epigenetic methylations that occur on the DNA and histones. In fact, downregulation of S-adenosylmethionine synthesis is the first functional effect directly ascribed to PDRG1. The existence of global DNA hypomethylation, together with increased PDRG1 expression, in many tumor cells highlights the importance of this interaction as one of the putative underlying causes for cell transformation. Here, we will review the accumulated knowledge on this oncogene, emphasizing the numerous aspects that remain to be explored.
基金supported by the National Natural Science Foundation of China,Nos.30560042,81160161,81360198,82160255Education Department of Jiangxi Province,Nos.GJJ13198 and GJJ170021+1 种基金Jiangxi Provincial Department of Science and Technology,Nos.[2014]-47,20142BBG70062,20171BAB215022,20192BAB205043Health and Family Planning Commission of Jiangxi Province,No.20181019(all to RSX).
文摘Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur(TG)amyotrophic lateral sclerosis mouse model.However,most studies have only examined heterogenous nuclear ribonucleoprotein G expression in the amyotrophic lateral sclerosis model and heterogenous nuclear ribonucleoprotein G effects in amyotrophic lateral sclerosis pathogenesis such as in apoptosis are unknown.In this study,we studied the potential mechanism of heterogenous nuclear ribonucleoprotein G in neuronal death in the spinal cord of TG and wild-type mice and examined the mechanism by which heterogenous nuclear ribonucleoprotein G induces apoptosis.Heterogenous nuclear ribonucleoprotein G in spinal cord was analyzed using immunohistochemistry and western blotting,and cell proliferation and proteins(TAR DNA binding protein 43,superoxide dismutase 1,and Bax)were detected by the Cell Counting Kit-8 and western blot analysis in heterogenous nuclear ribonucleoprotein G siRNA-transfected PC12 cells.We analyzed heterogenous nuclear ribonucleoprotein G distribution in spinal cord in the amyotrophic lateral sclerosis model at various time points and the expressions of apoptosis and proliferation-related proteins.Heterogenous nuclear ribonucleoprotein G was mainly localized in neurons.Amyotrophic lateral sclerosis mice were examined at three stages:preonset(60-70 days),onset(90-100 days)and progression(120-130 days).The number of heterogenous nuclear ribonucleoprotein G-positive cells was significantly higher in the anterior horn of the lumbar spinal cord segment of TG mice at the preonset stage than that of control group but lower than that of the control group at the onset stage.The number of heterogenous nuclear ribonucleoprotein G-positive cells in both central canal and surrounding gray matter of the whole spinal cord of TG mice at the onset stage was significantly lower than that in the control group,whereas that of the lumbar spinal cord segment of TG mice was significantly higher than that in the control group at preonset stage and significantly lower than that in the control group at the progression stage.The numbers of heterogenous nuclear ribonucleoprotein G-positive cells in the posterior horn of cervical and thoracic segments of TG mice at preonset and progression stages were significantly lower than those in the control group.The expression of heterogenous nuclear ribonucleoprotein G in the cervical spinal cord segment of TG mice was significantly higher than that in the control group at the preonset stage but significantly lower at the progression stage.The expression of heterogenous nuclear ribonucleoprotein G in the thoracic spinal cord segment of TG mice was significantly increased at the preonset stage,significantly decreased at the onset stage,and significantly increased at the progression stage compared with the control group.heterogenous nuclear ribonucleoprotein G expression in the lumbar spinal cord segment of TG mice was significantly lower than that of the control group at the progression stage.After heterogenous nuclear ribonucleoprotein G gene silencing,PC12 cell survival was lower than that of control cells.Both TAR DNA binding protein 43 and Bax expressions were significantly increased in heterogenous nuclear ribonucleoprotein G-silenced cells compared with control cells.Our study suggests that abnormal distribution and expression of heterogenous nuclear ribonucleoprotein G might play a protective effect in amyotrophic lateral sclerosis development via preventing neuronal death by reducing abnormal TAR DNA binding protein 43 generation in the spinal cord.
文摘The internal region of bacterial translocatable IS1 acts as a cis-element to stimulate transcription from the various promoters located upstream. The product of the artA gene is genetically shown to stimulate transcription with the cis-element. Here, a codon-optimized artA gene was synthesized and cloned to express the ArtA protein. ArtA was purified as the Histagged protein. Nitrocellulose filter binding assay showed that ArtA specifically binds to the IS1 internal region. Electrophoretic mobility shift assay also showed specific binding of ArtA to the IS1 internal region. These results imply that ArtA directly binds to the IS1 internal region and stimulates transcription.