Accompanying with the increasingly saturated genome figures,DNA chip has been widely applied.Thanks to its advantages of integration,miniaturization and automation,DNA chip becomes a powerful research tool in various ...Accompanying with the increasingly saturated genome figures,DNA chip has been widely applied.Thanks to its advantages of integration,miniaturization and automation,DNA chip becomes a powerful research tool in various research fields including biology,medicine and chemistry.This article overviews the application of DNA chip technology in animal medicine from gene expression spectrum research,pathogenic microbial detection,bacterial typing,genetic mutations and polymorphism detection,pathogenic microbial genomics research,as well as its principle and classification.展开更多
The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a par...The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a parallel and quantita-tive fashion. DNA microarrays can be used to measure levels of gene expression for tens of thousands of gene simultane-ously and take advantage of all available sequence information for experimental design and data interpretation in pursuit of biological understanding. Recent progress in experimental genomics allows DNA microarrays not simply to provide a cata-logue of all the genes and information about their function, but to understand how the components work together to comprise functioning cells and organisms. This brief review gives a survey of DNA microarrays technology and its applications in ge-nome and gene function analysis, gene expression studies, biological signal and defense system, cell cycle regulation, mechanism of transcriptional regulation, proteomics, and the functionality of food component.展开更多
This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the...This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the entire human genome. Beyond the evolution and erratic mutations like transposons within the genome, it’s as if the memory of a fossil genome with multiple symmetries persists. This recalls the “intermingling” of information characterizing the fractal universe of chaos theory. The result leads to a balanced and perfect tuning between the masses of the two strands of the huge DNA molecule that constitute our genome. We show here how codon populations forming the single-stranded DNA sequences can constitute a critical approach to the understanding of junk DNA function. Then, we suggest revisiting certain methods published in our 2009 book “Codex Biogenesis”. In fact, we demonstrate here how the universal genetic code table is a powerful analytical filter to characterize single-stranded DNA sequences constituting chromosomes and genomes. We can then show that any genomic DNA sequence is featured by three numbers, which characterize it and its 64 codon populations with correlations greater than 99%. The number “1” is common to all sequences, expressing the second law of Chargaff. The other 2 numbers are related to each specific DNA sequence case characterizing life species. For example, the entire human genome is characterized by three remarkable numbers 1, 2, and Phi = 1.618 the golden ratio. Associated with each of these three numbers, we can match three axes of symmetry, then “imagine” a kind of hyperspace formed by these codon populations. Then we revisit the value (3-Phi)/2 which is probably universal and common to both the scale of quarks and atomic levels, balancing and tuning the whole human genome codon population. Finally, we demonstrate a new kind of duality between “form and substance” overlapping the whole human genome: we will show that—simultaneously with the duality between genes and junk DNA—there is a second layer of embedded hidden structure overlapping all the DNA of the whole human genome, dividing it into a second type of duality information/redundancy involving golden ratio proportions.展开更多
基金Supported by National Natural Science Foundation of China(30700597)~~
文摘Accompanying with the increasingly saturated genome figures,DNA chip has been widely applied.Thanks to its advantages of integration,miniaturization and automation,DNA chip becomes a powerful research tool in various research fields including biology,medicine and chemistry.This article overviews the application of DNA chip technology in animal medicine from gene expression spectrum research,pathogenic microbial detection,bacterial typing,genetic mutations and polymorphism detection,pathogenic microbial genomics research,as well as its principle and classification.
文摘The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellu-lar and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a parallel and quantita-tive fashion. DNA microarrays can be used to measure levels of gene expression for tens of thousands of gene simultane-ously and take advantage of all available sequence information for experimental design and data interpretation in pursuit of biological understanding. Recent progress in experimental genomics allows DNA microarrays not simply to provide a cata-logue of all the genes and information about their function, but to understand how the components work together to comprise functioning cells and organisms. This brief review gives a survey of DNA microarrays technology and its applications in ge-nome and gene function analysis, gene expression studies, biological signal and defense system, cell cycle regulation, mechanism of transcriptional regulation, proteomics, and the functionality of food component.
文摘This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the entire human genome. Beyond the evolution and erratic mutations like transposons within the genome, it’s as if the memory of a fossil genome with multiple symmetries persists. This recalls the “intermingling” of information characterizing the fractal universe of chaos theory. The result leads to a balanced and perfect tuning between the masses of the two strands of the huge DNA molecule that constitute our genome. We show here how codon populations forming the single-stranded DNA sequences can constitute a critical approach to the understanding of junk DNA function. Then, we suggest revisiting certain methods published in our 2009 book “Codex Biogenesis”. In fact, we demonstrate here how the universal genetic code table is a powerful analytical filter to characterize single-stranded DNA sequences constituting chromosomes and genomes. We can then show that any genomic DNA sequence is featured by three numbers, which characterize it and its 64 codon populations with correlations greater than 99%. The number “1” is common to all sequences, expressing the second law of Chargaff. The other 2 numbers are related to each specific DNA sequence case characterizing life species. For example, the entire human genome is characterized by three remarkable numbers 1, 2, and Phi = 1.618 the golden ratio. Associated with each of these three numbers, we can match three axes of symmetry, then “imagine” a kind of hyperspace formed by these codon populations. Then we revisit the value (3-Phi)/2 which is probably universal and common to both the scale of quarks and atomic levels, balancing and tuning the whole human genome codon population. Finally, we demonstrate a new kind of duality between “form and substance” overlapping the whole human genome: we will show that—simultaneously with the duality between genes and junk DNA—there is a second layer of embedded hidden structure overlapping all the DNA of the whole human genome, dividing it into a second type of duality information/redundancy involving golden ratio proportions.