Alternariol caused DNA single-strand breakage. Conversion of the closed circular double-stranded supercoiled DNA (pBR 322) to the nicked circular form and linear form was used to investigate the effect of extracts of ...Alternariol caused DNA single-strand breakage. Conversion of the closed circular double-stranded supercoiled DNA (pBR 322) to the nicked circular form and linear form was used to investigate the effect of extracts of some Chinese medical herbs on DNA nicking induced by alternariol. Some substances in the extracts of Rhizoma polygonati (RP) and Fructus lycii (FL) were shown to protect DNA from the attack by alternariol.Some substance in the RP may bind to plasmid DNA, and this binding reduces the electrophoretic mobility of DNA. These results indicate that substances from FL and RP may be used as DNA protectors. It is possible that they play an important role in preventing cancer.展开更多
Inhibition of RECl3 on Ni2O3-induced DNA breakage of human embryo lung cell (HEL) and reduced content of negative superoxidative ion (O2) in guinea alveolar macrophage (AM ) was observed by means of single cell gel el...Inhibition of RECl3 on Ni2O3-induced DNA breakage of human embryo lung cell (HEL) and reduced content of negative superoxidative ion (O2) in guinea alveolar macrophage (AM ) was observed by means of single cell gel electrophoresis assay (comet assay) and cytochrome C assay respectively. Incubated with 2×10 cell/ml human embryo lung cell for 1 h at 37℃, 20μg. ml-1 of Ni2O3 could obviously induce DNA strand breakage compared with the control (P< 0.01). Add 10 μg.ml-1 CeCl3 or 10μg RECl3 with 20 μg·ml-1 Ni2O3 simultaneously in to HEL culture, the DNA strand breakage caused by Ni2O3 reduction significantly. Culture with 4×10 cell/ ml AM for 1 h at 37℃, 10, 20 μg· ml-1 of Ni2O3 could distinctly increase·O2 content in AM compared with the control (P< 0.05). In the similar way, RECl3, CeCl3 or LaCl3 could evidently decrease·O2 content induced by Ni2O3 in AM (P<0.01), but both kinds of RE compounds can not suppress·O2 content in AM.展开更多
Hepatitis B virus(HBV)-induced hepatocellular carcinoma(HCC) is one of the most fre-quently occurring cancers.Hepadnaviral DNA integrations are considered to be essential agents which can promote the process of the he...Hepatitis B virus(HBV)-induced hepatocellular carcinoma(HCC) is one of the most fre-quently occurring cancers.Hepadnaviral DNA integrations are considered to be essential agents which can promote the process of the hepatocarcinogenesis.More and more researches were designed to find the relationship of the two.In this study,we investigated whether HBV DNA integration occurred at sites of DNA double-strand breaks(DSBs),one of the most detrimental DNA damage.An 18-bp I-SceI homing endonuclease recognition site was introduced into the DNA of HepG2 cell line by stable DNA transfection,then cells were incubated in patients’ serum with high HBV DNA copies and at the same time,DSBs were induced by transient expression of I-SceI after transfection of an I-SceI expression vector.By using nest PCR,the viral DNA was detected at the sites of the break.It appeared that integra-tion occurred between part of HBV x gene and the I-SceI induced breaks.The results suggested that DSBs,as the DNA damages,may serve as potential targets for hepadnaviral DNA insertion and the integrants would lead to widespread host genome changes necessarily.It provided a new site to investi-gate the integration.展开更多
In our previous study, complete single DNA strands which were obtained from nuclei, chloroplasts and plant mitochondria obeyed Chargaff’s second parity rule, although those which were obtained from animal mitochondri...In our previous study, complete single DNA strands which were obtained from nuclei, chloroplasts and plant mitochondria obeyed Chargaff’s second parity rule, although those which were obtained from animal mitochondria deviated from the rule. On the other hand, plant mitochondria obeyed another different rule after their classification. Complete single DNA strand sequences obtained from chloroplasts, plant mitochondria, and animal mitochondria, were divided into the coding and non-coding regions. The non-coding region, which was the complementary coding region on the reverse strand, was incorporated as a coding region in the forward strand. When the nucleotide contents of the coding region or non-coding regions were plotted against the composition of the four nucleotides in the complete single DNA strand, it was determined that chloroplast and plant mitochondrial DNA obeyed Chargaff’s second parity rule in both the coding and non-coding regions. However, animal mitochondrial DNA deviated from this rule. In chloroplast and plant mitochondrial DNA, which obey Chargaff’s second parity rule, the lines of regression for G (purine) and C (pyrimidine) intersected with regression lines for A (purine) and T (pyrimidines), respectively, at around 0.250 in all cases. On the other hand, in animal mitochondrial DNA, which deviates from Chargaff’s second parity rule, only regression lines due to the content of homonucleotides or their analogs in the coding or non-coding region against those in the complete single DNA strand intersected at around 0.250 at the horizontal axis. Conversely, the intersection of the two lines of regression (G and A or C and T) against the contents of heteronucleotides or their analogs shifted from 0.25 in both coding and non-coding regions. Nucleotide alternations in chloroplasts and plant mitochondria are strictly regulated, not only by the proportion of homonucleotides and their analogs, but also by the heteronucleotides and their analogs. They are strictly regulated in animal mitochondria only by the content of homonucleotides and their analogs.展开更多
DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB r...DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase (RAD51) focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging.展开更多
Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chro...Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chromosomes together until the metaphase I to anaphase I transition, is critical for proper chromosome segregation. Recent studies have suggested that the SPO 11 proteins have conserved functions in a number of organisms in generating sites of double-stranded DNA breaks (DSBs) that are thought to be the starting points of homologous recombination. Processing of these sites of DSBs requires the function of RecA homologs, such as RAD5 1, DMC 1, and others, as suggested by mutant studies; thus the failure to repair these meiotic DSBs results in abnormal chromosomal alternations, leading to disrupted meiosis. Recent discoveries on the functions of these RecA homologs have improved the understanding of the mechanisms underlying meiotic homologous recombination.展开更多
In microcantilever-based label-free biodetection technologies, deflection changes induced by adsorptions of double-stranded DNA (dsDNA) molecules on Au-layer surface are greatly affected by the mechanical, thermal a...In microcantilever-based label-free biodetection technologies, deflection changes induced by adsorptions of double-stranded DNA (dsDNA) molecules on Au-layer surface are greatly affected by the mechanical, thermal and electrical properties of DNA biofilm. In this paper, the elastic properties of dsDNA biofilm are studied. First, the Parsegian's empirical potential based on a mesoscopic liq- uid crystal theory is employed to describe the interaction energy among coarse-grained DNA cylinders. Then, con- sidering a Gaussian distribution of DNA interaxial distance, the thought experiment method is used to derive an analyti- cal expression for Young's modulus of DNA biofilm with a stochastic packing pattern for the first time. Results show that Young's modulus of DNA biofilm is on the order of 10 MPa. These findings could provide a simple and effective method to evaluate the mechanical properties of soft biofilm on snbstrate.展开更多
The adsorption dynamics of double-stranded DNA(dsDNA)molecules on a graphene oxide(GO)surface are important for applications of DNA/GO functional structures in biosensors,biomedicine and materials science.In this work...The adsorption dynamics of double-stranded DNA(dsDNA)molecules on a graphene oxide(GO)surface are important for applications of DNA/GO functional structures in biosensors,biomedicine and materials science.In this work,molecular dynamics simulations were used to examine the adsorption of different length dsDNA molecules(from 4 bp to24 bp)on the GO surface.The dsDNA molecules could be adsorbed on the GO surface through the terminal bases and stand on the GO surface.For short dsDNA(4 bp)molecules,the double-helix structure was partially or totally broken and the adsorption dynamics was affected by the structural fluctuation of short dsDNA and the distribution of the oxidized groups on the GO surface.For long dsDNA molecules(from 8 bp to 24 bp)adsorption is stable.By nonlinear fitting of the contact angle between the axis of the dsDNA molecule and the GO surface,we found that a dsDNA molecule adsorbed on a GO surface has the chance of orienting parallel to the GO surface if the length of the dsDNA molecule is longer than 54 bp.We attributed this behavior to the flexibility of dsDNA molecules.With increasing length,the flexibility of dsDNA molecules also increases,and this increasing flexibility gives an adsorbed dsDNA molecule more chance of reaching the GO surface with the free terminal.This work provides a whole picture of adsorption of dsDNA molecules on the GO surface and should be of benefit for the design of DNA/GO based biosensors.展开更多
The purpose of the study was to investigate if the high gradient strength and slew rate used for long MRI-thermometry monitoring could cause DNA double-stranded breaks (DSBs). To this end, an enzyme-linked immunosorbe...The purpose of the study was to investigate if the high gradient strength and slew rate used for long MRI-thermometry monitoring could cause DNA double-stranded breaks (DSBs). To this end, an enzyme-linked immunosorbent assay (ELISA) was used to quantify γH2AX, a molecular marker for DSBs, in the blood of mice after a 6-hour exposure to magnetic resonance imaging (MRI). Fourteen CF-1 female mice were separated into 4 experimental groups: Untreated negative control, MRI-treated, MRI-Control, and exposed to ionizing radiation positive control. Untreated negative control was used as a baseline for ELISA to quantify γH2AX. MRI-treated consisted of a 6-hour continuous magnetic resonance imaging (MRI) echo planar imaging (EPI) sequence with a slew rate of 192 mT/m/s constituting a significantly longer imaging time than routine clinical imaging. MRI-control mice were maintained under the same conditions outside the MRI scanner for 6-hours. Mice in the irradiation group served as a positive control of DSBs and were exposed to either 2 Gy, 5 Gy or 10 Gy of ionizing radiation. DSBs in the blood lymphocytes from the treatment groups were analyzed using the γH2AX ELISA and compared. Total protein concentration in lysates was determined for each blood sample and averaged 1 ± 0.35 mg/mL. Irradiated positive controls were used to test radiation dose-dependency of the γH2AX ELISA assay where a linear dependency on radiation exposure was observed (r<sup>2</sup> = 0.93) between untreated and irradiated samples. Mean and standard error mean of γH2AX formation were calculated and compared between each treatment group. Repeated measures 1-way ANOVA showed statistically significant differences between the means of irradiated controls and both the MRI-control and MRI-treated groups. There was no statistically significant difference between the MRI-treated samples and the MRI-control groups. Our results show that long MRI exposure at a high slew rate did not cause increased levels of γH2AX when compared to control mice, suggesting that no increase in DSBs was caused by the long MR thermometry imaging session. The novelty of this work contradicts other studies that have suggested MRI may cause DSBs;this work suggests an alternative cause of DNA damage.展开更多
文摘Alternariol caused DNA single-strand breakage. Conversion of the closed circular double-stranded supercoiled DNA (pBR 322) to the nicked circular form and linear form was used to investigate the effect of extracts of some Chinese medical herbs on DNA nicking induced by alternariol. Some substances in the extracts of Rhizoma polygonati (RP) and Fructus lycii (FL) were shown to protect DNA from the attack by alternariol.Some substance in the RP may bind to plasmid DNA, and this binding reduces the electrophoretic mobility of DNA. These results indicate that substances from FL and RP may be used as DNA protectors. It is possible that they play an important role in preventing cancer.
文摘Inhibition of RECl3 on Ni2O3-induced DNA breakage of human embryo lung cell (HEL) and reduced content of negative superoxidative ion (O2) in guinea alveolar macrophage (AM ) was observed by means of single cell gel electrophoresis assay (comet assay) and cytochrome C assay respectively. Incubated with 2×10 cell/ml human embryo lung cell for 1 h at 37℃, 20μg. ml-1 of Ni2O3 could obviously induce DNA strand breakage compared with the control (P< 0.01). Add 10 μg.ml-1 CeCl3 or 10μg RECl3 with 20 μg·ml-1 Ni2O3 simultaneously in to HEL culture, the DNA strand breakage caused by Ni2O3 reduction significantly. Culture with 4×10 cell/ ml AM for 1 h at 37℃, 10, 20 μg· ml-1 of Ni2O3 could distinctly increase·O2 content in AM compared with the control (P< 0.05). In the similar way, RECl3, CeCl3 or LaCl3 could evidently decrease·O2 content induced by Ni2O3 in AM (P<0.01), but both kinds of RE compounds can not suppress·O2 content in AM.
基金supported by grants from National Natural Sciences Foundation of China (No.30872237)the National Basic Research Program of China(No.2007CB512900)
文摘Hepatitis B virus(HBV)-induced hepatocellular carcinoma(HCC) is one of the most fre-quently occurring cancers.Hepadnaviral DNA integrations are considered to be essential agents which can promote the process of the hepatocarcinogenesis.More and more researches were designed to find the relationship of the two.In this study,we investigated whether HBV DNA integration occurred at sites of DNA double-strand breaks(DSBs),one of the most detrimental DNA damage.An 18-bp I-SceI homing endonuclease recognition site was introduced into the DNA of HepG2 cell line by stable DNA transfection,then cells were incubated in patients’ serum with high HBV DNA copies and at the same time,DSBs were induced by transient expression of I-SceI after transfection of an I-SceI expression vector.By using nest PCR,the viral DNA was detected at the sites of the break.It appeared that integra-tion occurred between part of HBV x gene and the I-SceI induced breaks.The results suggested that DSBs,as the DNA damages,may serve as potential targets for hepadnaviral DNA insertion and the integrants would lead to widespread host genome changes necessarily.It provided a new site to investi-gate the integration.
文摘In our previous study, complete single DNA strands which were obtained from nuclei, chloroplasts and plant mitochondria obeyed Chargaff’s second parity rule, although those which were obtained from animal mitochondria deviated from the rule. On the other hand, plant mitochondria obeyed another different rule after their classification. Complete single DNA strand sequences obtained from chloroplasts, plant mitochondria, and animal mitochondria, were divided into the coding and non-coding regions. The non-coding region, which was the complementary coding region on the reverse strand, was incorporated as a coding region in the forward strand. When the nucleotide contents of the coding region or non-coding regions were plotted against the composition of the four nucleotides in the complete single DNA strand, it was determined that chloroplast and plant mitochondrial DNA obeyed Chargaff’s second parity rule in both the coding and non-coding regions. However, animal mitochondrial DNA deviated from this rule. In chloroplast and plant mitochondrial DNA, which obey Chargaff’s second parity rule, the lines of regression for G (purine) and C (pyrimidine) intersected with regression lines for A (purine) and T (pyrimidines), respectively, at around 0.250 in all cases. On the other hand, in animal mitochondrial DNA, which deviates from Chargaff’s second parity rule, only regression lines due to the content of homonucleotides or their analogs in the coding or non-coding region against those in the complete single DNA strand intersected at around 0.250 at the horizontal axis. Conversely, the intersection of the two lines of regression (G and A or C and T) against the contents of heteronucleotides or their analogs shifted from 0.25 in both coding and non-coding regions. Nucleotide alternations in chloroplasts and plant mitochondria are strictly regulated, not only by the proportion of homonucleotides and their analogs, but also by the heteronucleotides and their analogs. They are strictly regulated in animal mitochondria only by the content of homonucleotides and their analogs.
基金supported by the National Key Research and Development Program of China(2017YFC1001102)National Natural Science Foundation of China(81760507)
文摘DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase (RAD51) focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging.
基金The authors thank Alexandra Surcel and Carey L Hendrix Lord for helpful comments on this manuscript.The work in our laboratory is supported by grants from the National Science Foundation(IBN-0077832,MCB-9896340,MCB-0092075)the National Institutes of Health(R0 1 GM63871)+3 种基金the US Department of Agriculture(2001-35301-10570 and 2003-35301-13313)Wuxing L was partially supported by the Intercollege Graduate Degree Program in Plant PhysiologyHong M gratefully acknowledges the support of the John Simon Guggenheim Foundationthe National Institutes of Health(F33 GM72245-1).
文摘Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chromosomes together until the metaphase I to anaphase I transition, is critical for proper chromosome segregation. Recent studies have suggested that the SPO 11 proteins have conserved functions in a number of organisms in generating sites of double-stranded DNA breaks (DSBs) that are thought to be the starting points of homologous recombination. Processing of these sites of DSBs requires the function of RecA homologs, such as RAD5 1, DMC 1, and others, as suggested by mutant studies; thus the failure to repair these meiotic DSBs results in abnormal chromosomal alternations, leading to disrupted meiosis. Recent discoveries on the functions of these RecA homologs have improved the understanding of the mechanisms underlying meiotic homologous recombination.
基金supported by the National Natural Science Foundation of China(11272193 and 10872121)the Shanghai Leading Academic Discipline Project(S30106)
文摘In microcantilever-based label-free biodetection technologies, deflection changes induced by adsorptions of double-stranded DNA (dsDNA) molecules on Au-layer surface are greatly affected by the mechanical, thermal and electrical properties of DNA biofilm. In this paper, the elastic properties of dsDNA biofilm are studied. First, the Parsegian's empirical potential based on a mesoscopic liq- uid crystal theory is employed to describe the interaction energy among coarse-grained DNA cylinders. Then, con- sidering a Gaussian distribution of DNA interaxial distance, the thought experiment method is used to derive an analyti- cal expression for Young's modulus of DNA biofilm with a stochastic packing pattern for the first time. Results show that Young's modulus of DNA biofilm is on the order of 10 MPa. These findings could provide a simple and effective method to evaluate the mechanical properties of soft biofilm on snbstrate.
基金Project supported by the National Natural Science Foundation of China (Grant No.11974366)the Fundamental Research Funds for the Central Universities+2 种基金Chinathe Supercomputer Center of the Chinese Academy of Sciencesthe Shanghai Supercomputer Center of China。
文摘The adsorption dynamics of double-stranded DNA(dsDNA)molecules on a graphene oxide(GO)surface are important for applications of DNA/GO functional structures in biosensors,biomedicine and materials science.In this work,molecular dynamics simulations were used to examine the adsorption of different length dsDNA molecules(from 4 bp to24 bp)on the GO surface.The dsDNA molecules could be adsorbed on the GO surface through the terminal bases and stand on the GO surface.For short dsDNA(4 bp)molecules,the double-helix structure was partially or totally broken and the adsorption dynamics was affected by the structural fluctuation of short dsDNA and the distribution of the oxidized groups on the GO surface.For long dsDNA molecules(from 8 bp to 24 bp)adsorption is stable.By nonlinear fitting of the contact angle between the axis of the dsDNA molecule and the GO surface,we found that a dsDNA molecule adsorbed on a GO surface has the chance of orienting parallel to the GO surface if the length of the dsDNA molecule is longer than 54 bp.We attributed this behavior to the flexibility of dsDNA molecules.With increasing length,the flexibility of dsDNA molecules also increases,and this increasing flexibility gives an adsorbed dsDNA molecule more chance of reaching the GO surface with the free terminal.This work provides a whole picture of adsorption of dsDNA molecules on the GO surface and should be of benefit for the design of DNA/GO based biosensors.
文摘The purpose of the study was to investigate if the high gradient strength and slew rate used for long MRI-thermometry monitoring could cause DNA double-stranded breaks (DSBs). To this end, an enzyme-linked immunosorbent assay (ELISA) was used to quantify γH2AX, a molecular marker for DSBs, in the blood of mice after a 6-hour exposure to magnetic resonance imaging (MRI). Fourteen CF-1 female mice were separated into 4 experimental groups: Untreated negative control, MRI-treated, MRI-Control, and exposed to ionizing radiation positive control. Untreated negative control was used as a baseline for ELISA to quantify γH2AX. MRI-treated consisted of a 6-hour continuous magnetic resonance imaging (MRI) echo planar imaging (EPI) sequence with a slew rate of 192 mT/m/s constituting a significantly longer imaging time than routine clinical imaging. MRI-control mice were maintained under the same conditions outside the MRI scanner for 6-hours. Mice in the irradiation group served as a positive control of DSBs and were exposed to either 2 Gy, 5 Gy or 10 Gy of ionizing radiation. DSBs in the blood lymphocytes from the treatment groups were analyzed using the γH2AX ELISA and compared. Total protein concentration in lysates was determined for each blood sample and averaged 1 ± 0.35 mg/mL. Irradiated positive controls were used to test radiation dose-dependency of the γH2AX ELISA assay where a linear dependency on radiation exposure was observed (r<sup>2</sup> = 0.93) between untreated and irradiated samples. Mean and standard error mean of γH2AX formation were calculated and compared between each treatment group. Repeated measures 1-way ANOVA showed statistically significant differences between the means of irradiated controls and both the MRI-control and MRI-treated groups. There was no statistically significant difference between the MRI-treated samples and the MRI-control groups. Our results show that long MRI exposure at a high slew rate did not cause increased levels of γH2AX when compared to control mice, suggesting that no increase in DSBs was caused by the long MR thermometry imaging session. The novelty of this work contradicts other studies that have suggested MRI may cause DSBs;this work suggests an alternative cause of DNA damage.