Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable...Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable computational operations in response to specific stimuli.This review provides a comprehensive overview of recent advancements in the design,working principles,and applications of stimuli-responsive DNA-based logic gates.The progress made in developing various types of logic gates triggered by metal ions,pH,oligonucleotides,small molecules,proteins,and light is highlighted.The applications of these logic gates in imaging and biosensing,drug delivery,synthetic biology and molecular computing are discussed.This review underscores the significant contributions and future prospects of stimuli-responsive DNA-based logic gates in advancing the field of nanotechnology.展开更多
基金supported by Hong Kong Research Grants Council(11307421,11301220,and 11304719)Health and Medical Research Fund(09203576 and 07181396)+2 种基金National Science Foundation of China(21574109 and 217780430)The Science and Technology Innovation Committee of Shenzhen Municipality(JCYJ20190812160203619)City University of Hong Kong 7005832 and 7006006.
文摘Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable computational operations in response to specific stimuli.This review provides a comprehensive overview of recent advancements in the design,working principles,and applications of stimuli-responsive DNA-based logic gates.The progress made in developing various types of logic gates triggered by metal ions,pH,oligonucleotides,small molecules,proteins,and light is highlighted.The applications of these logic gates in imaging and biosensing,drug delivery,synthetic biology and molecular computing are discussed.This review underscores the significant contributions and future prospects of stimuli-responsive DNA-based logic gates in advancing the field of nanotechnology.