Methylation of the N6 position of adenine, termed N6-methyladenine, protects DNA from restriction endonucleases via the host-specific restriction-modification system. N6-methyladenine was discovered and has been well ...Methylation of the N6 position of adenine, termed N6-methyladenine, protects DNA from restriction endonucleases via the host-specific restriction-modification system. N6-methyladenine was discovered and has been well studied in bacteria. N6-adenine-specific DNA methyltransferase(N6AMT) is the main enzyme catalyzing the methylation of the adenine base and knowledge of this enzyme was mainly derived from work in prokaryotic models. However, large-scale gene discovery at the genome level in many model organisms indicated that the N6AMT gene also exists in eukaryotes, such as humans, mice, fruit flies and plants. Here, we cloned a N6AMT gene from Nilaparvata lugens(Nlu-N6AMT) and amplified its fulllength transcript. Then, we carried out a systematic investigation of N6AMT in 33 publically available insect genomes, indicating that all studied insects had N6AMT. Genomic structure analysis showed that insect N6AMT has short introns compared with the mammalian homologs. Domain and phylogenetic analysis indicated that insect N6AMT had a conserved N6-adenine Mlase domain that is specific to catalyze the adenine methylation. Nlu-N6AMT was highly expressed in the adult female. We knocked down Nlu-N6AMT by feeding ds RNA from the second instar nymph to adult female, inducing retard development of adult female. In all, we provide the first genome-wide analysis of N6AMT in insects and presented the experimental evidence that N6AMT might have important functions in reproductive development and ovary maturation.展开更多
The relationship between hypermethylation of CpG islands in the promoter regions of O^6- methylguanine DNA methyhransferase (MGMT) genes and laryngeal squamous cell carcinoma was explored. Methylation-specific PCR a...The relationship between hypermethylation of CpG islands in the promoter regions of O^6- methylguanine DNA methyhransferase (MGMT) genes and laryngeal squamous cell carcinoma was explored. Methylation-specific PCR and semi-quantitative RT-PCR were used to study the promoter methylation and mRNA expression of the MGMT gene in laryngeal carcinoma tissues, tissues adjacent to the tumor and normal laryngeal tissues. Hypermethylation of MGMT gene was detected in 16 samples of 46 (34.8 %) laryngeal squamous cell carcinoma samples. However, the MGMT hypermethylation was not detected in all tissues adjacent to the tumors and normal tissues. No significant difference in MGMT gene hypermethylation was found in samples with different histological grades (χ^2= 3. 130, P=0. 077) or in samples from patients with different TNM status (χ^2= 3. 957, P=0. 138). No expression of MGMT mRNA was detected in all hypermethylated laryngeal carcinoma tissues. The expression of MGMT mRNA was detected in all unmethylated laryngeal carcinoma tissues, tissues adjacent to the tumors and normal tissues. It suggests that MGMT gene promoter hypermethylation is associated with MGMT gene transcription loss in laryngeal carcinoma tissues and possibly plays an important role in carcinogenesis of laryngeal tissues.展开更多
基金supported by the National Basic Research Program of China (2012CB114102)
文摘Methylation of the N6 position of adenine, termed N6-methyladenine, protects DNA from restriction endonucleases via the host-specific restriction-modification system. N6-methyladenine was discovered and has been well studied in bacteria. N6-adenine-specific DNA methyltransferase(N6AMT) is the main enzyme catalyzing the methylation of the adenine base and knowledge of this enzyme was mainly derived from work in prokaryotic models. However, large-scale gene discovery at the genome level in many model organisms indicated that the N6AMT gene also exists in eukaryotes, such as humans, mice, fruit flies and plants. Here, we cloned a N6AMT gene from Nilaparvata lugens(Nlu-N6AMT) and amplified its fulllength transcript. Then, we carried out a systematic investigation of N6AMT in 33 publically available insect genomes, indicating that all studied insects had N6AMT. Genomic structure analysis showed that insect N6AMT has short introns compared with the mammalian homologs. Domain and phylogenetic analysis indicated that insect N6AMT had a conserved N6-adenine Mlase domain that is specific to catalyze the adenine methylation. Nlu-N6AMT was highly expressed in the adult female. We knocked down Nlu-N6AMT by feeding ds RNA from the second instar nymph to adult female, inducing retard development of adult female. In all, we provide the first genome-wide analysis of N6AMT in insects and presented the experimental evidence that N6AMT might have important functions in reproductive development and ovary maturation.
文摘The relationship between hypermethylation of CpG islands in the promoter regions of O^6- methylguanine DNA methyhransferase (MGMT) genes and laryngeal squamous cell carcinoma was explored. Methylation-specific PCR and semi-quantitative RT-PCR were used to study the promoter methylation and mRNA expression of the MGMT gene in laryngeal carcinoma tissues, tissues adjacent to the tumor and normal laryngeal tissues. Hypermethylation of MGMT gene was detected in 16 samples of 46 (34.8 %) laryngeal squamous cell carcinoma samples. However, the MGMT hypermethylation was not detected in all tissues adjacent to the tumors and normal tissues. No significant difference in MGMT gene hypermethylation was found in samples with different histological grades (χ^2= 3. 130, P=0. 077) or in samples from patients with different TNM status (χ^2= 3. 957, P=0. 138). No expression of MGMT mRNA was detected in all hypermethylated laryngeal carcinoma tissues. The expression of MGMT mRNA was detected in all unmethylated laryngeal carcinoma tissues, tissues adjacent to the tumors and normal tissues. It suggests that MGMT gene promoter hypermethylation is associated with MGMT gene transcription loss in laryngeal carcinoma tissues and possibly plays an important role in carcinogenesis of laryngeal tissues.