DNA 计算是应用分子生物技术进行计算的新方法。从理论上研究 DNA 计算方法,有利于推动理论计算科学的发展。本系列文章应用形式语言及自动机理论技术,系统地探讨了 DNA 分子的可计算性及其计算能力。本文主要介绍 DNA 分子粘接计算模...DNA 计算是应用分子生物技术进行计算的新方法。从理论上研究 DNA 计算方法,有利于推动理论计算科学的发展。本系列文章应用形式语言及自动机理论技术,系统地探讨了 DNA 分子的可计算性及其计算能力。本文主要介绍 DNA 分子粘接计算模型的文法结构和计算方法,探讨了不同粘接计算模型的计算能力,并证明了 DNA 有穷自动机与正规文法的等价性。展开更多
This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the...This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the entire human genome. Beyond the evolution and erratic mutations like transposons within the genome, it’s as if the memory of a fossil genome with multiple symmetries persists. This recalls the “intermingling” of information characterizing the fractal universe of chaos theory. The result leads to a balanced and perfect tuning between the masses of the two strands of the huge DNA molecule that constitute our genome. We show here how codon populations forming the single-stranded DNA sequences can constitute a critical approach to the understanding of junk DNA function. Then, we suggest revisiting certain methods published in our 2009 book “Codex Biogenesis”. In fact, we demonstrate here how the universal genetic code table is a powerful analytical filter to characterize single-stranded DNA sequences constituting chromosomes and genomes. We can then show that any genomic DNA sequence is featured by three numbers, which characterize it and its 64 codon populations with correlations greater than 99%. The number “1” is common to all sequences, expressing the second law of Chargaff. The other 2 numbers are related to each specific DNA sequence case characterizing life species. For example, the entire human genome is characterized by three remarkable numbers 1, 2, and Phi = 1.618 the golden ratio. Associated with each of these three numbers, we can match three axes of symmetry, then “imagine” a kind of hyperspace formed by these codon populations. Then we revisit the value (3-Phi)/2 which is probably universal and common to both the scale of quarks and atomic levels, balancing and tuning the whole human genome codon population. Finally, we demonstrate a new kind of duality between “form and substance” overlapping the whole human genome: we will show that—simultaneously with the duality between genes and junk DNA—there is a second layer of embedded hidden structure overlapping all the DNA of the whole human genome, dividing it into a second type of duality information/redundancy involving golden ratio proportions.展开更多
文摘DNA 计算是应用分子生物技术进行计算的新方法。从理论上研究 DNA 计算方法,有利于推动理论计算科学的发展。本系列文章应用形式语言及自动机理论技术,系统地探讨了 DNA 分子的可计算性及其计算能力。本文主要介绍 DNA 分子粘接计算模型的文法结构和计算方法,探讨了不同粘接计算模型的计算能力,并证明了 DNA 有穷自动机与正规文法的等价性。
文摘This article proves the existence of a hyper-precise global numerical meta-architecture unifying, structuring, binding and controlling the billion triplet codons constituting the sequence of single-stranded DNA of the entire human genome. Beyond the evolution and erratic mutations like transposons within the genome, it’s as if the memory of a fossil genome with multiple symmetries persists. This recalls the “intermingling” of information characterizing the fractal universe of chaos theory. The result leads to a balanced and perfect tuning between the masses of the two strands of the huge DNA molecule that constitute our genome. We show here how codon populations forming the single-stranded DNA sequences can constitute a critical approach to the understanding of junk DNA function. Then, we suggest revisiting certain methods published in our 2009 book “Codex Biogenesis”. In fact, we demonstrate here how the universal genetic code table is a powerful analytical filter to characterize single-stranded DNA sequences constituting chromosomes and genomes. We can then show that any genomic DNA sequence is featured by three numbers, which characterize it and its 64 codon populations with correlations greater than 99%. The number “1” is common to all sequences, expressing the second law of Chargaff. The other 2 numbers are related to each specific DNA sequence case characterizing life species. For example, the entire human genome is characterized by three remarkable numbers 1, 2, and Phi = 1.618 the golden ratio. Associated with each of these three numbers, we can match three axes of symmetry, then “imagine” a kind of hyperspace formed by these codon populations. Then we revisit the value (3-Phi)/2 which is probably universal and common to both the scale of quarks and atomic levels, balancing and tuning the whole human genome codon population. Finally, we demonstrate a new kind of duality between “form and substance” overlapping the whole human genome: we will show that—simultaneously with the duality between genes and junk DNA—there is a second layer of embedded hidden structure overlapping all the DNA of the whole human genome, dividing it into a second type of duality information/redundancy involving golden ratio proportions.