The field of practical DNA computing opened in 1994 with Adleman's paper,in which a laboratory experi-ment involving DNA molecules was used to solve a small instance of the Hamiltonian Path problem. The characteri...The field of practical DNA computing opened in 1994 with Adleman's paper,in which a laboratory experi-ment involving DNA molecules was used to solve a small instance of the Hamiltonian Path problem. The characteris-tic of this computation is its powerful ability in parallelism, its huge storage and high energy efficiency. This papermainly introduces the principles of DNA computing and the sticker computing model.展开更多
提出了粘贴 DNA 芯片模型,该模型综合了粘贴模型的筛选功能和 DNA 芯片模型的检测功能.利用这两个特点设计了基于粘贴 DNA 芯片模型的求解八皇后问题全部解的 DNA 算法.该算法首先产生所有可能的解,再分别按照行要求,列要求和对角线要...提出了粘贴 DNA 芯片模型,该模型综合了粘贴模型的筛选功能和 DNA 芯片模型的检测功能.利用这两个特点设计了基于粘贴 DNA 芯片模型的求解八皇后问题全部解的 DNA 算法.该算法首先产生所有可能的解,再分别按照行要求,列要求和对角线要求逐步筛选出八皇后问题的全部解.利用 DNA 芯片检测出实验结果,然后对每个实验步骤分析了算法的生化实现过程并得到了八皇后问题的全部解.最后讨论了算法的复杂性及其优势.展开更多
文摘The field of practical DNA computing opened in 1994 with Adleman's paper,in which a laboratory experi-ment involving DNA molecules was used to solve a small instance of the Hamiltonian Path problem. The characteris-tic of this computation is its powerful ability in parallelism, its huge storage and high energy efficiency. This papermainly introduces the principles of DNA computing and the sticker computing model.
文摘提出了粘贴 DNA 芯片模型,该模型综合了粘贴模型的筛选功能和 DNA 芯片模型的检测功能.利用这两个特点设计了基于粘贴 DNA 芯片模型的求解八皇后问题全部解的 DNA 算法.该算法首先产生所有可能的解,再分别按照行要求,列要求和对角线要求逐步筛选出八皇后问题的全部解.利用 DNA 芯片检测出实验结果,然后对每个实验步骤分析了算法的生化实现过程并得到了八皇后问题的全部解.最后讨论了算法的复杂性及其优势.