The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-ind...The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-induced transparency. On the other hand, there are also various bio-solitons in DNA and proteins, which are manifested as various structural solitons such as kinks, or transmission solitons that use kinks as envelope waves and carry exponential and other wave functions. It is in DNA that there are two types of solitons with different properties, namely, wave envelope solitons have the function of transmitting biological binding energy and biological information, and Kink solitons only have the function of expanding or contracting double helix structures or opening and closing double helices. Their mutual cooperation enables the function of DNA to be completed. This paper proposes that the bio-photonic solitons in the bio-photonic radiation resonate with various solitons in the receptor DNA or protein as a whole (or locally), thereby transmitting biological information or genetic information, which is one of the important mechanisms for the bio-photonic radiation to transmit donors or change the genetic traits of receptors. It can be simply referred to as the soliton resonance mechanism. Furthermore, through the research and development of various instruments for collecting or amplifying plant photonic radiation signals, human cells can safely receive plant signals. This can be a process of resonance between plant photonic solitons and various biological solitons in human cells, which can play a role in regulating diseases. These experimental results and applications also provide an excellent interpretation of the soliton resonance mechanism.展开更多
用新建立的非线性动力学模型研究了DNA的非线性特性及它的复制与遗传 ,转录和转译等生物功能。这个新的模型强调了碱基氢键中的氢原子的独特作用 ,使用了三个动力学变量来描述氢原子在双Morse势中的振动及碱基的振动与转动 ,并充分考虑...用新建立的非线性动力学模型研究了DNA的非线性特性及它的复制与遗传 ,转录和转译等生物功能。这个新的模型强调了碱基氢键中的氢原子的独特作用 ,使用了三个动力学变量来描述氢原子在双Morse势中的振动及碱基的振动与转动 ,并充分考虑了三个运动模之间的耦合效应。应用这模型得到了复制与转录的特性 ,说明了DNA的分型特征及D DNA A DNA以及B DNA Z展开更多
We here study the influences of the temperature and solvent ions in solution on the states and properties of DNA by a new dynamical model. This model admits three degrees of freedom per base-pair: two displacement var...We here study the influences of the temperature and solvent ions in solution on the states and properties of DNA by a new dynamical model. This model admits three degrees of freedom per base-pair: two displacement variables related to the vibrations of the hydrogen atom in the hydrogen bonds and base (nucleotide), respectively, and an angular variable related to the rotation of each base, which delineate different forms of motion of the hydrogen atom and bases and the relations among them. In this -model we stress specially the important role of the hydrogen atom in the hydrogen bonds of the bases in the dynamics of DNA. According to their properties of motion we give the Hamiltonian of the system and the corresponding equations of motion, and End out their soliton solutions. The solitons formed by the displacements of the hydrogen atoms and bases and their rotations are the excitation states arising from the energy absorbed by the DNA working at the biological temperature. We give further the free energy of the thermal excitation state in DNA system by transfer integral way and End out the corresponding specific heat. The specific heat increases with the increasing of the temperature and concentration of the solvent ions in the solution, but is not linear changes in the region of high temperature. If compared with experimental data, they are approximately consistent. Meanwhile we End that the solvent ion conceptration influences seriously on the stability, states, and configurations of DNA.展开更多
The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physio...The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physiological temperature is analytically and numerically investigated in this paper. We have made an analogy with the Heisenberg model Hamiltonian of an anisotropic spin ladder with ferromagnetic legs and anti-ferromagnetic rung coupling. When we limit ourselves to the second-order terms in the Taylor expansion, the DNA dynamics is found to be governed by a completely integrable nonlinear Schr?dinger (NLS) equation. In this case, results show that increasing the value of HC force or LRI parameter enhances the bubble height and reduces the number of base pairs which form the bubble. For the fourth-order terms in a Taylor expansion, results are closely resembling those of second-order terms, and are confirmed by numerical investigation. These results match with some experimental data and thus provide a better representation of the base pairs opening in DNA which is essential for the transcription process.展开更多
文摘The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-induced transparency. On the other hand, there are also various bio-solitons in DNA and proteins, which are manifested as various structural solitons such as kinks, or transmission solitons that use kinks as envelope waves and carry exponential and other wave functions. It is in DNA that there are two types of solitons with different properties, namely, wave envelope solitons have the function of transmitting biological binding energy and biological information, and Kink solitons only have the function of expanding or contracting double helix structures or opening and closing double helices. Their mutual cooperation enables the function of DNA to be completed. This paper proposes that the bio-photonic solitons in the bio-photonic radiation resonate with various solitons in the receptor DNA or protein as a whole (or locally), thereby transmitting biological information or genetic information, which is one of the important mechanisms for the bio-photonic radiation to transmit donors or change the genetic traits of receptors. It can be simply referred to as the soliton resonance mechanism. Furthermore, through the research and development of various instruments for collecting or amplifying plant photonic radiation signals, human cells can safely receive plant signals. This can be a process of resonance between plant photonic solitons and various biological solitons in human cells, which can play a role in regulating diseases. These experimental results and applications also provide an excellent interpretation of the soliton resonance mechanism.
文摘用新建立的非线性动力学模型研究了DNA的非线性特性及它的复制与遗传 ,转录和转译等生物功能。这个新的模型强调了碱基氢键中的氢原子的独特作用 ,使用了三个动力学变量来描述氢原子在双Morse势中的振动及碱基的振动与转动 ,并充分考虑了三个运动模之间的耦合效应。应用这模型得到了复制与转录的特性 ,说明了DNA的分型特征及D DNA A DNA以及B DNA Z
文摘We here study the influences of the temperature and solvent ions in solution on the states and properties of DNA by a new dynamical model. This model admits three degrees of freedom per base-pair: two displacement variables related to the vibrations of the hydrogen atom in the hydrogen bonds and base (nucleotide), respectively, and an angular variable related to the rotation of each base, which delineate different forms of motion of the hydrogen atom and bases and the relations among them. In this -model we stress specially the important role of the hydrogen atom in the hydrogen bonds of the bases in the dynamics of DNA. According to their properties of motion we give the Hamiltonian of the system and the corresponding equations of motion, and End out their soliton solutions. The solitons formed by the displacements of the hydrogen atoms and bases and their rotations are the excitation states arising from the energy absorbed by the DNA working at the biological temperature. We give further the free energy of the thermal excitation state in DNA system by transfer integral way and End out the corresponding specific heat. The specific heat increases with the increasing of the temperature and concentration of the solvent ions in the solution, but is not linear changes in the region of high temperature. If compared with experimental data, they are approximately consistent. Meanwhile we End that the solvent ion conceptration influences seriously on the stability, states, and configurations of DNA.
文摘The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physiological temperature is analytically and numerically investigated in this paper. We have made an analogy with the Heisenberg model Hamiltonian of an anisotropic spin ladder with ferromagnetic legs and anti-ferromagnetic rung coupling. When we limit ourselves to the second-order terms in the Taylor expansion, the DNA dynamics is found to be governed by a completely integrable nonlinear Schr?dinger (NLS) equation. In this case, results show that increasing the value of HC force or LRI parameter enhances the bubble height and reduces the number of base pairs which form the bubble. For the fourth-order terms in a Taylor expansion, results are closely resembling those of second-order terms, and are confirmed by numerical investigation. These results match with some experimental data and thus provide a better representation of the base pairs opening in DNA which is essential for the transcription process.