The eukaryotic genome is packaged into a complex nucleoprotein structure named chromatin, balancing the compactness of genome and the accessibility of regulatory proteins and RNA polymerases to DNA. The mechanisms of ...The eukaryotic genome is packaged into a complex nucleoprotein structure named chromatin, balancing the compactness of genome and the accessibility of regulatory proteins and RNA polymerases to DNA. The mechanisms of the regulation of chromatin dynamics include the post-translational modification of histones, alteration of nucleosome positions by chromatin remodelers, replacement of canonical histones by histone variants with the aid of histone chaperones, and dynamic organization of the three-dimensional genome in the small nucleus. Histone variants are different from canonical histones by substitution of several amino acid residues or changes in amino acid sequence. Histone variants perform specialized functions such as altering nucleosome stability, dynamics, structure, as well as playing critical roles in a range of biological processes like transcriptional regulation, DNA repair and recombination, development and immune responses. Here we discuss how histone variants, their modification and specific loading to chromatin are involved in transcriptional regulation, DNA repair and plant development.展开更多
基金supported by the National Natural Science Foundation of China(31171168 and 91319304)National Basic Research Program of China(2012CB910503)
文摘The eukaryotic genome is packaged into a complex nucleoprotein structure named chromatin, balancing the compactness of genome and the accessibility of regulatory proteins and RNA polymerases to DNA. The mechanisms of the regulation of chromatin dynamics include the post-translational modification of histones, alteration of nucleosome positions by chromatin remodelers, replacement of canonical histones by histone variants with the aid of histone chaperones, and dynamic organization of the three-dimensional genome in the small nucleus. Histone variants are different from canonical histones by substitution of several amino acid residues or changes in amino acid sequence. Histone variants perform specialized functions such as altering nucleosome stability, dynamics, structure, as well as playing critical roles in a range of biological processes like transcriptional regulation, DNA repair and recombination, development and immune responses. Here we discuss how histone variants, their modification and specific loading to chromatin are involved in transcriptional regulation, DNA repair and plant development.