DNA甲基化状态是由从头合成的甲基化、维持型甲基化和DNA主动去甲基化动态调控的结果,由不同调节途径靶向各种酶的催化。5-甲基胞嘧啶DNA糖基化酶/裂解酶ROS1(REPRESSOR OF SILENCING1)是一种DNA去甲基化酶,能够通过启动碱基切除修复途...DNA甲基化状态是由从头合成的甲基化、维持型甲基化和DNA主动去甲基化动态调控的结果,由不同调节途径靶向各种酶的催化。5-甲基胞嘧啶DNA糖基化酶/裂解酶ROS1(REPRESSOR OF SILENCING1)是一种DNA去甲基化酶,能够通过启动碱基切除修复途径完成DNA主动去甲基化。介绍了植物中DNA主动去甲基化途径中的去甲基化酶和调节因子;ROS1介导的DNA主动去甲基化的途径;DNA主动去甲基化酶ROS1在各种植物不同发育过程中的作用,包括负调控印记基因表达和种子休眠、调控水稻籽粒品质、影响植物气孔发育等。展开更多
甲基化是DNA的一种化学修饰,能够在不改变DNA序列的前提下改变遗传表现,是一种相对稳定且可遗传的表观遗传标记。在生物体内DNA甲基化和去甲基化的动态平衡控制着基因表达的强度。植物和动物细胞中均存在DNA主动去甲基化现象,植物中ROS1...甲基化是DNA的一种化学修饰,能够在不改变DNA序列的前提下改变遗传表现,是一种相对稳定且可遗传的表观遗传标记。在生物体内DNA甲基化和去甲基化的动态平衡控制着基因表达的强度。植物和动物细胞中均存在DNA主动去甲基化现象,植物中ROS1/DME切除甲基化的胞嘧啶后由碱基切除修复机制完成DNA主动去甲基化;动物中则是TET1蛋白先将5-甲基胞嘧啶(5-methylcytosine,5mC)氧化为5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC)、5-甲酰基胞嘧啶(5-formylcytosine,5fC)和5-羧基胞嘧啶(5-carboxycytosine,5caC),然后通过胸腺嘧啶DNA糖基化酶(thymine DNA glycosylase,TDG)切除5fC和5caC,最后经过碱基切除修复得到未修饰的胞嘧啶。本文主要对动植物中DNA主动去甲基化途径及其调控机制的最新研究进展进行综述及比较分析,为相关领域的进一步深入研究提供理论支持。展开更多
In plants, demethylation of 5-methylcytosine (5 mC) residues is controlled by DNA glycosylases, while in mammals it requires oxidation of 5 mC by TET proteins, a group of Fe(II)/2-oxoglutaratedependent dioxygenases. W...In plants, demethylation of 5-methylcytosine (5 mC) residues is controlled by DNA glycosylases, while in mammals it requires oxidation of 5 mC by TET proteins, a group of Fe(II)/2-oxoglutaratedependent dioxygenases. We analysed the effects of expressing the C-terminal catalytic domain of the human TET3 gene (TET3c) in Arabidopsis thaliana, using an rDNA region as a methylation reporter. In TET3c transformants, epialleles with hypomethylation or hypermethylation patterns can be induced, which is each stably retained in progeny lines even after removal of the TET3c transgene. In TET3c transformants, 5-hydroxymethylcytosine (5 hmC) marks are detected, indicative of the oxidative activity of the transgenic enzyme. 5-formylcytosine (5 fC) is only detectable in TET3c transformants with a DNA glycosylase mutant background suggesting further oxidation of 5 hmC residues to 5 fC by TET3c, and efficient recognition and removal of 5 fC by plant glycosylases. The results suggest that TET3c can be employed to induce heritable locus-specific changes in DNA methylation, and that accumulation of 5 hmC can be used as a marker for TET3c target regions.展开更多
文摘DNA甲基化状态是由从头合成的甲基化、维持型甲基化和DNA主动去甲基化动态调控的结果,由不同调节途径靶向各种酶的催化。5-甲基胞嘧啶DNA糖基化酶/裂解酶ROS1(REPRESSOR OF SILENCING1)是一种DNA去甲基化酶,能够通过启动碱基切除修复途径完成DNA主动去甲基化。介绍了植物中DNA主动去甲基化途径中的去甲基化酶和调节因子;ROS1介导的DNA主动去甲基化的途径;DNA主动去甲基化酶ROS1在各种植物不同发育过程中的作用,包括负调控印记基因表达和种子休眠、调控水稻籽粒品质、影响植物气孔发育等。
文摘甲基化是DNA的一种化学修饰,能够在不改变DNA序列的前提下改变遗传表现,是一种相对稳定且可遗传的表观遗传标记。在生物体内DNA甲基化和去甲基化的动态平衡控制着基因表达的强度。植物和动物细胞中均存在DNA主动去甲基化现象,植物中ROS1/DME切除甲基化的胞嘧啶后由碱基切除修复机制完成DNA主动去甲基化;动物中则是TET1蛋白先将5-甲基胞嘧啶(5-methylcytosine,5mC)氧化为5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC)、5-甲酰基胞嘧啶(5-formylcytosine,5fC)和5-羧基胞嘧啶(5-carboxycytosine,5caC),然后通过胸腺嘧啶DNA糖基化酶(thymine DNA glycosylase,TDG)切除5fC和5caC,最后经过碱基切除修复得到未修饰的胞嘧啶。本文主要对动植物中DNA主动去甲基化途径及其调控机制的最新研究进展进行综述及比较分析,为相关领域的进一步深入研究提供理论支持。
文摘In plants, demethylation of 5-methylcytosine (5 mC) residues is controlled by DNA glycosylases, while in mammals it requires oxidation of 5 mC by TET proteins, a group of Fe(II)/2-oxoglutaratedependent dioxygenases. We analysed the effects of expressing the C-terminal catalytic domain of the human TET3 gene (TET3c) in Arabidopsis thaliana, using an rDNA region as a methylation reporter. In TET3c transformants, epialleles with hypomethylation or hypermethylation patterns can be induced, which is each stably retained in progeny lines even after removal of the TET3c transgene. In TET3c transformants, 5-hydroxymethylcytosine (5 hmC) marks are detected, indicative of the oxidative activity of the transgenic enzyme. 5-formylcytosine (5 fC) is only detectable in TET3c transformants with a DNA glycosylase mutant background suggesting further oxidation of 5 hmC residues to 5 fC by TET3c, and efficient recognition and removal of 5 fC by plant glycosylases. The results suggest that TET3c can be employed to induce heritable locus-specific changes in DNA methylation, and that accumulation of 5 hmC can be used as a marker for TET3c target regions.