A color image encryption method combining deoxyribonucleic(DNA)encoding and hyperchaotic mapping is proposed to solve the problems of simple structure,low complexit and low security of the existing encryption system f...A color image encryption method combining deoxyribonucleic(DNA)encoding and hyperchaotic mapping is proposed to solve the problems of simple structure,low complexit and low security of the existing encryption system for low-dimensional chaotic mapping encoding system and a single DNA encoding system.Firstly,according to the information of the plaintext images,the initial values of all chaotic maps and the random matrices with the same size as the plaintext images are iteratively generated.Then,the generated initial values and random matrices are divided into the sub-blocks with the same size.The DNA encoding mode of each sub-block and the DNA operation rules between the sub-blocks are determined by the dynamic hyperchaotic sequence.Finally,the diffusion operation is adopted to achieve a better encryption effect.The simulation results indicate that the proposed encryption algorithm can resist a variety of attacks due to its high complexity,strong security and large key space.展开更多
In this paper,we proposed a facile and accurate way for controlling multiplex fluorescent logic gates through changing the exciting and the observing wavelengths.As proof-of-principle,a Pb2+-specific DNAzyme probe and...In this paper,we proposed a facile and accurate way for controlling multiplex fluorescent logic gates through changing the exciting and the observing wavelengths.As proof-of-principle,a Pb2+-specific DNAzyme probe and a thymine(T)-rich DNA probe were introduced to a double-stranded(ds-)DNA.The addition style of the two ions served as the four inputs by changing the distance of the three fluorophores,6-carboxyfluorescein(FAM),ALEXA 532(ALEXA)and carboxytetramethylrhodamine(TAMRA),all of which were modified on the dsDNA probe.Compared with the previous methods,the present approach needed neither different inputs nor the change of sequence of the probe to achieve multiplex logic gates.Furthermore,the modularity of the strategy may allow it to be extended to other types of logic gates.展开更多
基金Research and Practice Project of“Double Innovation”Education and Teaching Model of Mechatronics Engineering Specialty。
文摘A color image encryption method combining deoxyribonucleic(DNA)encoding and hyperchaotic mapping is proposed to solve the problems of simple structure,low complexit and low security of the existing encryption system for low-dimensional chaotic mapping encoding system and a single DNA encoding system.Firstly,according to the information of the plaintext images,the initial values of all chaotic maps and the random matrices with the same size as the plaintext images are iteratively generated.Then,the generated initial values and random matrices are divided into the sub-blocks with the same size.The DNA encoding mode of each sub-block and the DNA operation rules between the sub-blocks are determined by the dynamic hyperchaotic sequence.Finally,the diffusion operation is adopted to achieve a better encryption effect.The simulation results indicate that the proposed encryption algorithm can resist a variety of attacks due to its high complexity,strong security and large key space.
基金supported by the National Natural Science Foundation of China(21005026 and 21135001)the National Basic Research Program of China(2011CB911000)the Foundation for Innovative Research Groups of NSFC(21221003)
文摘In this paper,we proposed a facile and accurate way for controlling multiplex fluorescent logic gates through changing the exciting and the observing wavelengths.As proof-of-principle,a Pb2+-specific DNAzyme probe and a thymine(T)-rich DNA probe were introduced to a double-stranded(ds-)DNA.The addition style of the two ions served as the four inputs by changing the distance of the three fluorophores,6-carboxyfluorescein(FAM),ALEXA 532(ALEXA)and carboxytetramethylrhodamine(TAMRA),all of which were modified on the dsDNA probe.Compared with the previous methods,the present approach needed neither different inputs nor the change of sequence of the probe to achieve multiplex logic gates.Furthermore,the modularity of the strategy may allow it to be extended to other types of logic gates.