This study utilizes the enzyme-substrate complex theory to predict the clinical efficacy of COVID-19 treatments at the biological systems level, using molecular docking stability indicators. Experimental data from the...This study utilizes the enzyme-substrate complex theory to predict the clinical efficacy of COVID-19 treatments at the biological systems level, using molecular docking stability indicators. Experimental data from the Protein Data Bank and molecular structures generated by AlphaFold 3 were used to create macromolecular complex templates. Six templates were developed, including the holo nsp7-nsp8-nsp12 (RNA-dependent RNA polymerase) complex with dsRNA primers (holo-RdRp-RNA). The study evaluated several ligands—Favipiravir-RTP, Remdesivir, Abacavir, Ribavirin, and Oseltamivir—as potential viral RNA polymerase inhibitors. Notably, the first four of these ligands have been clinically employed in the treatment of COVID-19, allowing for comparative analysis. Molecular docking simulations were performed using AutoDock 4, and statistical differences were assessed through t-tests and Mann-Whitney U tests. A review of the literature on COVID-19 treatment outcomes and inhibitors targeting RNA polymerase enzymes was conducted, and the inhibitors were ranked according to their clinical efficacy: Remdesivir > Favipiravir-RTP > Oseltamivir. Docking results obtained from the second and third templates aligned with clinical observations. Furthermore, Abacavir demonstrated a predicted efficacy comparable to Favipiravir-RTP, while Ribavirin exhibited a predicted efficacy similar to that of Remdesivir. This research, focused on inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase, establishes a framework for screening AI-generated drug templates based on clinical outcomes. Additionally, it develops a drug screening platform based on molecular docking binding energy, enabling the evaluation of novel or repurposed drugs and potentially accelerating the drug development process.展开更多
Single-guide RNA(sg RNA) is one of the two core components of the CRISPR(clustered regularly interspaced short palindromic repeat)/Cas(CRISPR-associated) genome-editing technology. We established an in vitro Traffic L...Single-guide RNA(sg RNA) is one of the two core components of the CRISPR(clustered regularly interspaced short palindromic repeat)/Cas(CRISPR-associated) genome-editing technology. We established an in vitro Traffic Light Reporter(TLR) system, which is designated as the same colors as traffic lights such as green, red and yellow were produced in cells. The TLR can be readily used in maize mesophyll protoplast for a quick test of promoter activity. The TLR assay indicates the variation in transcription activities of the seven Pol III promoters, from 3.4%(U6-1) to over 21.0%(U6-6). The U6-2 promoter, which was constructed to drive sg RNA expression targeting the Zm Wx1 gene, yielded mutation efficiencies ranging from 48.5% to 97.1%. Based on the reported and unpublished data, the in vitro TLR assay results were confirmed to be a readily system and may be extended to other plant species amenable to efficient genome editing via CRISPR/Cas. Our efforts provide an efficient method of identifying native Pol III-recognized promoters for RNA guide-based genome-editing systems in maize.展开更多
The double-shelled grass carp reovirus (GCRV) is capable of endogenous RNA transcription and processing.Genome sequence analysis has revealed that the protein VP2,encoded by gene segment 2 (S2),is the putative RNA...The double-shelled grass carp reovirus (GCRV) is capable of endogenous RNA transcription and processing.Genome sequence analysis has revealed that the protein VP2,encoded by gene segment 2 (S2),is the putative RNA-dependent RNA polymerase (RdRp).In previous work,we have ex-pressed the functional region of VP2 that is associated with RNA polymerase activity (denoted as rVP2390-900) in E.coil and have prepared a polyclonal antibody against VP2.To characterize the GCRV RNA polymerase,a recombinant full-length VP2 (rVP2) was first constructed and expressed in a baculovirus system,as a fusion protein with an attached His-tag.Immunofluorescence (IF) assays,together with immunoblot (IB) analyses from both expressed cell extracts and purified Histagged rVP2,showed that rVP2 was successfully expressed in Sf9 cells.Further characterization of the replicase activity showed that purified rVP2 and GCRV particles exhibited poly(C)-dependent poly(G) polymerase activity.The RNA enzymatic activity required the divalent cation Mg2+,and was optimal at 28 ℃.The results provide a foundation for further studies on the RNA polymerases of aquareoviruses during viral transcription and replication.展开更多
Total 40 natural compounds were selected to perform the molecular docking studies to screen and identify the potent antiviral agents specifically for Severe Acute Respiratory Syndrome Coronavirus 2 that causes coronav...Total 40 natural compounds were selected to perform the molecular docking studies to screen and identify the potent antiviral agents specifically for Severe Acute Respiratory Syndrome Coronavirus 2 that causes coronavirus disease 2019(COVID-19).The key targets of COVID-19,protease(PDB ID:7BQY)and RNA polymerase(PDB ID:7bV2)were used to dock our target compounds by Molecular Operating Environment(MOE)version 2014.09.We used 3 different conformations of protease target(6M0K,6Y2F and 7BQY)and two different score functions to strengthen the probability of inhibitors discovery.After an extensive screening analysis,20 compounds exhibit good binding affinities to one or both COVID-19 targets.7 out of 20 compounds were predicted to overcome the activity of both targets.The top 7 hits are,flacourticin(3),sagerinic acid(16),hordatine A(23),hordatine B(24),N-feruloyl tyramine dimer(25),bisavenanthramides B-5(29)and vulnibactins(40).According to our results,all these top hits was found to have a better binding scores than remdesivir,the native ligand in RNA polymerase target(PDB ID:7bV2).Hordatines are phenolic compounds present in barley,were found to exhibit the highest binding affinity to both protease and polymerase through forming strong hydrogen bonds with the catalytic residues,as well as significant interactions with other receptor-binding residues.These results probably provided an excellent lead candidate for the development of therapeutic drugs against COVID-19.Eventually,animal experiment and accurate clinical trials are needed to confirm the preventive potentials of these compounds.展开更多
T7 RNA polymerase can transcribe DNA to RNA by translocating along the DNA. Structural studies suggest that the pivoting rotation of the O helix in the fingers domain may drive the movement of the O helix C-terminal T...T7 RNA polymerase can transcribe DNA to RNA by translocating along the DNA. Structural studies suggest that the pivoting rotation of the O helix in the fingers domain may drive the movement of the O helix C-terminal Tyr639 from pre- to post-translocation positions. In a series of all-atom molecular dynamics simulations, we show that the movement of Tyr639 is not tightly coupled to the rotation of the O helix, and that the two processes are only weakly dependent on each other. We also show that the internal potential of the enzyme itself generates a small difference in free energy (△E) between the post- and pre-translocation positions of Tyr639. The calculated value of △E is consistent with that obtained from single-molecule experimental data. These findings lend support to a model in which the translocation takes place via a Brownian ratchet mechanism, with the small free energy bias △E arising from the conformational change of the enzyme itself.展开更多
Phage T7 RNA polymerase is a single-subunit transcription enzyme, transcribing template DNA to RNA. Nucleoside triphosphate (NTP) selection and translocation are two critical steps of the transcription elongation. H...Phage T7 RNA polymerase is a single-subunit transcription enzyme, transcribing template DNA to RNA. Nucleoside triphosphate (NTP) selection and translocation are two critical steps of the transcription elongation. Here, using all-atom molecular dynamics simulations, we found that between pre- and post-translocation states of T7 RNA polymerase an intermediate state exists, where the O helix C-terminal residue tyrosine 639, which plays important roles in translocation, locates between its pre- and post-translocation positions and the side chain of the next template DNA nucleotide has moved into the active site. NTP selection in this intermediate state was studied, revealing that the selection in the intermediate state can be achieved relying on the effect of Watson-Crick interaction between NTP and template DNA nucleotide, effect of stability of the components near the active site such as the nascent DNA-RNA hybrid and role of tyrosine 639. This indicates that another NTP-selection pathway can also exist besides the main pathway where NTP selection begins at the post-translocation state upon the entry of NTE展开更多
Full gene sequence of RNA-dependent RNA polymerase (RdRp) from Bombyx mori infectious flacherie virus isolated in Zhejiang Province, China (Zhejiang01/CHN/2002) was cloned. The sequence was 1 920 nucleotides in le...Full gene sequence of RNA-dependent RNA polymerase (RdRp) from Bombyx mori infectious flacherie virus isolated in Zhejiang Province, China (Zhejiang01/CHN/2002) was cloned. The sequence was 1 920 nucleotides in length coding 639 amino acid residues. Sequences comparison of RdRp showed Zhejiang01/CHN/2002 was 99.7% nucleotide sequence and 99.1% amino acids sequence homology with Japanese strain. The RdRp sequence was aligned with 8 representative picorna(-like) viruses and 8 highly conserved regions were detected. The result indicated their relevance function. Phylogenetic tree of 14 picorna(-like) viruses which RdRp presumed protein sequences revealed that the viruses from Iflavirus genus formed an independent clade. The RdRp was successfully expressed in BmN cells using Bac-to-Bac expression system.展开更多
Proteins are crucial to most biological processes, such as enzymes, and in various catalytic processes a dynamic motion is required. The dynamics of protein are embodied as a conformational change, which is closely re...Proteins are crucial to most biological processes, such as enzymes, and in various catalytic processes a dynamic motion is required. The dynamics of protein are embodied as a conformational change, which is closely related to the flexibility of protein. Recently, nanopore sensors have become accepted as a low cost and high throughput method to study the features of proteins. In this article, we used a SiN nanopore device to study the flexibility of T7 RNA polymerase(RNAP) and its complex with DNA promoter. By calculating full-width at half-maximum(FWHM) of Gaussian fits to the blockade histograms, we found that T7 RNAP becomes more flexible after binding DNA promoter. Moreover, the distribution of fractional current blockade suggests that flexibility alters due to a breath-like change of the volume.展开更多
During transcription initiation,RNA polymerase binds tightly to the promoter DNA defining the start of transcription,transcribes comparatively slowly,and frequently releases short transcripts(3-8 nucleotides)in a proc...During transcription initiation,RNA polymerase binds tightly to the promoter DNA defining the start of transcription,transcribes comparatively slowly,and frequently releases short transcripts(3-8 nucleotides)in a process called abortive cycling.Transitioning to elongation,the second phase of transcription,the polymerase dissociates from the promoter while RNA synthesis continues.Elongation is characterized by higher rates of transcription and tight binding to the RNA transcript.The RNA polymerase from enterophage T7 (T7 RNAP) has been used as a model to understand the mechanism of transcription in general,and the transition from initiation to elongation specifically.This single-subunit enzyme undergoes dramatic conformational changes during this transition to support the changing requirements of nucleic acid interactions while continuously maintaining polymerase function.Crystal structures,available of multiple stages of the initiation complex and of the elongation complex,combined with biochemical and biophysical data,offer molecular detail of the transition.Some of the crystal structures contain a variant of T7 RNAP where proline 266 is substituted by leucine.This variant shows less abortive products and altered timing of transition,and is a valuable tool to study these processes.The structural transitions from early to late initiation are well understood and are consistent with solution data.The timing of events and the structural intermediates in the transition from late initiation to elongation are less well understood,but the available data allows one to formulate testable models of the transition to guide further research.展开更多
A novel influenza virus of the H7N9 subtype has infected more than 350 people in China since 19 February 2013. Evolutionary analysis indicates that the virus is a reassortant originated from H7, N9 and H9N2 avian infl...A novel influenza virus of the H7N9 subtype has infected more than 350 people in China since 19 February 2013. Evolutionary analysis indicates that the virus is a reassortant originated from H7, N9 and H9N2 avian influenza viruses, and bears some amino acids associated with mammalian receptor binding, raising concern over the possibility of a new influenza pandemic. Besides HA and NA, the mutation of the polymerase is known to have an important role in virulence, host adaptation and transmissibility in mammalians. In this article, the annotation of the polymerase protein domain associated with molecular function has been highlighted, suggesting the combination of RNA polymerase of H7N9 viruses is still not stable for host adaptation. In addition, the mutation hallmarks in polymerase gene of H7N9 are compared, providing the potential determinants of the evolution in the H7N9 influenza A virus.展开更多
Transcription is a highly regulated cellular process in which dysfunction leads to disease. One level of regulation is chromatin structure which protects promoters from transcription factor binding. To circumvent this...Transcription is a highly regulated cellular process in which dysfunction leads to disease. One level of regulation is chromatin structure which protects promoters from transcription factor binding. To circumvent this blockade, histone chaperones aid in displacement of nucleosomes. In particular, the histone chaperone complex HUCA, consisting of Hira, Ubn1, Cabin1, and ASF1a, replaces histone variant H3.1 with H3.3 in front of actively transcribing RNA Polymerase II (RNAPII). The 26S proteasome is a major degrader of proteins within the cell and plays both proteolytic and non- proteolytic roles in transcriptional regulation. One major role is the degradation of irreversibly arrested RNAPII. Several interactions between HUCA, the 26S proteasome, and RNAPII have been characterized individually;we now present observations from our lab and others which directly associate elongating RNAPII with the degradation machinery through observations of involvement with the HUCA complex. Our short report presents these ideas and discusses their importance in transcriptional regulation as well as implications in disease manifestation.展开更多
Severe acute respiratory syndrome coronavirus 2(SARS-Co V-2) relies on the central molecular machine RNA-dependent RNA polymerase(Rd Rp) for the viral replication and transcription. Remdesivir at the template strand h...Severe acute respiratory syndrome coronavirus 2(SARS-Co V-2) relies on the central molecular machine RNA-dependent RNA polymerase(Rd Rp) for the viral replication and transcription. Remdesivir at the template strand has been shown to effectively inhibit the RNA synthesis in SARS-Co V-2 Rd Rp by deactivating not only the complementary UTP incorporation but also the next nucleotide addition. However, the underlying molecular mechanism of the second inhibitory point remains unclear. In this work, we have performed molecular dynamics simulations and demonstrated that such inhibition has not directly acted on the nucleotide addition at the active site. Instead, the translocation of Remdesivir from +1 to-1 site is hindered thermodynamically as the posttranslocation state is less stable than the pre-translocation state due to the motif B residue G683. Moreover, another conserved residue S682 on motif B further hinders the dynamic translocation of Remdesivir due to the steric clash with the 1′-cyano substitution. Overall,our study has unveiled an alternative role of motif B in mediating the translocation when Remdesivir is present in the template strand and complemented our understanding about the inhibitory mechanisms exerted by Remdesivir on the RNA synthesis in SARS-Co V-2 Rd Rp.展开更多
Anti-RNA Polymerase III has been recognized as an important autoantibody in Systemic Sclerosis and it is now included in the 2013 ACR/EULAR classification criteria for Systemic Sclerosis. With this manuscript we attem...Anti-RNA Polymerase III has been recognized as an important autoantibody in Systemic Sclerosis and it is now included in the 2013 ACR/EULAR classification criteria for Systemic Sclerosis. With this manuscript we attempt to review the current data on anti-RNA polymerase II as it relates to Systemic Sclerosis.展开更多
Baculoviruses are the only nuclear replicating DNA-containing viruses that encode their own DNA-directed RNA polymerase (RNAP). The baculovirus RNAP is specific for the transcription of genes expressed after virus DNA...Baculoviruses are the only nuclear replicating DNA-containing viruses that encode their own DNA-directed RNA polymerase (RNAP). The baculovirus RNAP is specific for the transcription of genes expressed after virus DNA replication. It is composed of four subunits, making it the simplest multisubunit RNAP known. Two subunits contain motifs found at the catalytic center of other RNAPs and a third has capping enzyme functions. The function of the fourth subunit is not known. Structural studies on this unique RNAP will provide new insights into the functions of this enzyme and the regulation of viral genes and may be instrumental to optimize the baculovirus gene expression system.展开更多
Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. M...Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. Methods DNA polymerase beta knock-down cell line was established via RNA interference as an experimental group. Normal human bronchial epithelial cells and cells transfected with the empty vector of pEGFP-C1 were used as controls. Cells were treated with different concentrations of hydroquinone (ranged from 10 μmol/L to 120 μmol/L) for 4 hours. MTT assay and Comet assay [single-cell gel electrophoresis (SCGE)] were performed respectively to detect the toxicity of hydroquinone. Results assay showed that DNA polymerase beta knock-down cells treated with different concentrations of hydroquinone had a lower absorbance value at 490 nm than the control cells in a dose-dependant manner. Comet assay revealed that different concentrations of hydroquinone caused more severe DNA damage in DNA polymerase beta knock-down cell line than in control cells and there was no significant difference in the two control groups. Conclusions Hydroquinone has significant toxicity to human bronchial epithelial cells and causes DNA damage. DNA polymerase beta knock-down cell line appears more sensitive to hydroquinone than the control cells. The results suggest that DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone.展开更多
AIM: To study persistence and replication of hepatitis C virus (HCV) in patients' peripheral blood mononuclear cells (PBMC) cultured in vitro. METHODS: Epstein Barr virus (EBV) was used to transform the hepatitis ...AIM: To study persistence and replication of hepatitis C virus (HCV) in patients' peripheral blood mononuclear cells (PBMC) cultured in vitro. METHODS: Epstein Barr virus (EBV) was used to transform the hepatitis C virus from a HCV positive patient to permanent lymphoblastoid cell lines (LCL). Positive and negative HCV RNA strands of the cultured cells and growth media were detected by reverse transcriptase-polymerase chain reaction (RT-PCR) each month. Core and NS5 proteins of HCV were further tested using immunohistochemical SP method and in situ RT-PCR. RESULTS: HCV RNA positive strands were consistently detected the cultured cells for one year. The negative-strand RNA in LCL cells and the positive-strand RNA in supernatants were observed intermittently. Immunohistochemical results medicated expression of HCV NS3 and C proteins in LCL cytoplasm mostly. The positive signal of PCR product was dark blue and mainly localized to the LCL cytoplasm. The RT-PCR signal was eliminated by overnight RNase digestion but not DNase digestion. CONCLUSION: HCV may exist and remain functional in a cultured cell line for a long period.展开更多
INTRODUCTIONAcute narcotizing pancreatitis usually takes a severe clinical course and is associated with multiple organ dysfunction .With the further understanding of pathophysiological events of acute pancreatisis an...INTRODUCTIONAcute narcotizing pancreatitis usually takes a severe clinical course and is associated with multiple organ dysfunction .With the further understanding of pathophysiological events of acute pancreatisis and the therapeutic measuses taken by the clinicians ,the patients can pass through the critical carry stages ,and then the septic complication caused by rtanslocated bacteria, mostly gram-negative microbes from the intestines ensues[1].展开更多
文摘This study utilizes the enzyme-substrate complex theory to predict the clinical efficacy of COVID-19 treatments at the biological systems level, using molecular docking stability indicators. Experimental data from the Protein Data Bank and molecular structures generated by AlphaFold 3 were used to create macromolecular complex templates. Six templates were developed, including the holo nsp7-nsp8-nsp12 (RNA-dependent RNA polymerase) complex with dsRNA primers (holo-RdRp-RNA). The study evaluated several ligands—Favipiravir-RTP, Remdesivir, Abacavir, Ribavirin, and Oseltamivir—as potential viral RNA polymerase inhibitors. Notably, the first four of these ligands have been clinically employed in the treatment of COVID-19, allowing for comparative analysis. Molecular docking simulations were performed using AutoDock 4, and statistical differences were assessed through t-tests and Mann-Whitney U tests. A review of the literature on COVID-19 treatment outcomes and inhibitors targeting RNA polymerase enzymes was conducted, and the inhibitors were ranked according to their clinical efficacy: Remdesivir > Favipiravir-RTP > Oseltamivir. Docking results obtained from the second and third templates aligned with clinical observations. Furthermore, Abacavir demonstrated a predicted efficacy comparable to Favipiravir-RTP, while Ribavirin exhibited a predicted efficacy similar to that of Remdesivir. This research, focused on inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase, establishes a framework for screening AI-generated drug templates based on clinical outcomes. Additionally, it develops a drug screening platform based on molecular docking binding energy, enabling the evaluation of novel or repurposed drugs and potentially accelerating the drug development process.
基金supported by the National Science Foundation of China(31771808)Ministry of Science and Technology(2015BAD02B0203)+1 种基金National Engineering Laboratory of Crop Molecular Breedingthe Chinese Academy of Agricultural Sciences(Y2017XM03)
文摘Single-guide RNA(sg RNA) is one of the two core components of the CRISPR(clustered regularly interspaced short palindromic repeat)/Cas(CRISPR-associated) genome-editing technology. We established an in vitro Traffic Light Reporter(TLR) system, which is designated as the same colors as traffic lights such as green, red and yellow were produced in cells. The TLR can be readily used in maize mesophyll protoplast for a quick test of promoter activity. The TLR assay indicates the variation in transcription activities of the seven Pol III promoters, from 3.4%(U6-1) to over 21.0%(U6-6). The U6-2 promoter, which was constructed to drive sg RNA expression targeting the Zm Wx1 gene, yielded mutation efficiencies ranging from 48.5% to 97.1%. Based on the reported and unpublished data, the in vitro TLR assay results were confirmed to be a readily system and may be extended to other plant species amenable to efficient genome editing via CRISPR/Cas. Our efforts provide an efficient method of identifying native Pol III-recognized promoters for RNA guide-based genome-editing systems in maize.
基金supported by funding from the National Natural Science Foundation of China (grants: 31172434, 31372565)
文摘The double-shelled grass carp reovirus (GCRV) is capable of endogenous RNA transcription and processing.Genome sequence analysis has revealed that the protein VP2,encoded by gene segment 2 (S2),is the putative RNA-dependent RNA polymerase (RdRp).In previous work,we have ex-pressed the functional region of VP2 that is associated with RNA polymerase activity (denoted as rVP2390-900) in E.coil and have prepared a polyclonal antibody against VP2.To characterize the GCRV RNA polymerase,a recombinant full-length VP2 (rVP2) was first constructed and expressed in a baculovirus system,as a fusion protein with an attached His-tag.Immunofluorescence (IF) assays,together with immunoblot (IB) analyses from both expressed cell extracts and purified Histagged rVP2,showed that rVP2 was successfully expressed in Sf9 cells.Further characterization of the replicase activity showed that purified rVP2 and GCRV particles exhibited poly(C)-dependent poly(G) polymerase activity.The RNA enzymatic activity required the divalent cation Mg2+,and was optimal at 28 ℃.The results provide a foundation for further studies on the RNA polymerases of aquareoviruses during viral transcription and replication.
文摘Total 40 natural compounds were selected to perform the molecular docking studies to screen and identify the potent antiviral agents specifically for Severe Acute Respiratory Syndrome Coronavirus 2 that causes coronavirus disease 2019(COVID-19).The key targets of COVID-19,protease(PDB ID:7BQY)and RNA polymerase(PDB ID:7bV2)were used to dock our target compounds by Molecular Operating Environment(MOE)version 2014.09.We used 3 different conformations of protease target(6M0K,6Y2F and 7BQY)and two different score functions to strengthen the probability of inhibitors discovery.After an extensive screening analysis,20 compounds exhibit good binding affinities to one or both COVID-19 targets.7 out of 20 compounds were predicted to overcome the activity of both targets.The top 7 hits are,flacourticin(3),sagerinic acid(16),hordatine A(23),hordatine B(24),N-feruloyl tyramine dimer(25),bisavenanthramides B-5(29)and vulnibactins(40).According to our results,all these top hits was found to have a better binding scores than remdesivir,the native ligand in RNA polymerase target(PDB ID:7bV2).Hordatines are phenolic compounds present in barley,were found to exhibit the highest binding affinity to both protease and polymerase through forming strong hydrogen bonds with the catalytic residues,as well as significant interactions with other receptor-binding residues.These results probably provided an excellent lead candidate for the development of therapeutic drugs against COVID-19.Eventually,animal experiment and accurate clinical trials are needed to confirm the preventive potentials of these compounds.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374352 and 11274374)the National Key Research and Development Program of China(Grant No.2016YFA0301500)
文摘T7 RNA polymerase can transcribe DNA to RNA by translocating along the DNA. Structural studies suggest that the pivoting rotation of the O helix in the fingers domain may drive the movement of the O helix C-terminal Tyr639 from pre- to post-translocation positions. In a series of all-atom molecular dynamics simulations, we show that the movement of Tyr639 is not tightly coupled to the rotation of the O helix, and that the two processes are only weakly dependent on each other. We also show that the internal potential of the enzyme itself generates a small difference in free energy (△E) between the post- and pre-translocation positions of Tyr639. The calculated value of △E is consistent with that obtained from single-molecule experimental data. These findings lend support to a model in which the translocation takes place via a Brownian ratchet mechanism, with the small free energy bias △E arising from the conformational change of the enzyme itself.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374352 and 11674381)the National Key Research and Development Program of China(Grant No.2016YFA0301500)
文摘Phage T7 RNA polymerase is a single-subunit transcription enzyme, transcribing template DNA to RNA. Nucleoside triphosphate (NTP) selection and translocation are two critical steps of the transcription elongation. Here, using all-atom molecular dynamics simulations, we found that between pre- and post-translocation states of T7 RNA polymerase an intermediate state exists, where the O helix C-terminal residue tyrosine 639, which plays important roles in translocation, locates between its pre- and post-translocation positions and the side chain of the next template DNA nucleotide has moved into the active site. NTP selection in this intermediate state was studied, revealing that the selection in the intermediate state can be achieved relying on the effect of Watson-Crick interaction between NTP and template DNA nucleotide, effect of stability of the components near the active site such as the nascent DNA-RNA hybrid and role of tyrosine 639. This indicates that another NTP-selection pathway can also exist besides the main pathway where NTP selection begins at the post-translocation state upon the entry of NTE
基金supported by the National 863 Program of China (2006AA10A119)the Key Project of Science and Technology Commission of Zhejiang Province,China (2003C22013)
文摘Full gene sequence of RNA-dependent RNA polymerase (RdRp) from Bombyx mori infectious flacherie virus isolated in Zhejiang Province, China (Zhejiang01/CHN/2002) was cloned. The sequence was 1 920 nucleotides in length coding 639 amino acid residues. Sequences comparison of RdRp showed Zhejiang01/CHN/2002 was 99.7% nucleotide sequence and 99.1% amino acids sequence homology with Japanese strain. The RdRp sequence was aligned with 8 representative picorna(-like) viruses and 8 highly conserved regions were detected. The result indicated their relevance function. Phylogenetic tree of 14 picorna(-like) viruses which RdRp presumed protein sequences revealed that the viruses from Iflavirus genus formed an independent clade. The RdRp was successfully expressed in BmN cells using Bac-to-Bac expression system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51622201,91733301,and 61571015)
文摘Proteins are crucial to most biological processes, such as enzymes, and in various catalytic processes a dynamic motion is required. The dynamics of protein are embodied as a conformational change, which is closely related to the flexibility of protein. Recently, nanopore sensors have become accepted as a low cost and high throughput method to study the features of proteins. In this article, we used a SiN nanopore device to study the flexibility of T7 RNA polymerase(RNAP) and its complex with DNA promoter. By calculating full-width at half-maximum(FWHM) of Gaussian fits to the blockade histograms, we found that T7 RNAP becomes more flexible after binding DNA promoter. Moreover, the distribution of fractional current blockade suggests that flexibility alters due to a breath-like change of the volume.
文摘During transcription initiation,RNA polymerase binds tightly to the promoter DNA defining the start of transcription,transcribes comparatively slowly,and frequently releases short transcripts(3-8 nucleotides)in a process called abortive cycling.Transitioning to elongation,the second phase of transcription,the polymerase dissociates from the promoter while RNA synthesis continues.Elongation is characterized by higher rates of transcription and tight binding to the RNA transcript.The RNA polymerase from enterophage T7 (T7 RNAP) has been used as a model to understand the mechanism of transcription in general,and the transition from initiation to elongation specifically.This single-subunit enzyme undergoes dramatic conformational changes during this transition to support the changing requirements of nucleic acid interactions while continuously maintaining polymerase function.Crystal structures,available of multiple stages of the initiation complex and of the elongation complex,combined with biochemical and biophysical data,offer molecular detail of the transition.Some of the crystal structures contain a variant of T7 RNAP where proline 266 is substituted by leucine.This variant shows less abortive products and altered timing of transition,and is a valuable tool to study these processes.The structural transitions from early to late initiation are well understood and are consistent with solution data.The timing of events and the structural intermediates in the transition from late initiation to elongation are less well understood,but the available data allows one to formulate testable models of the transition to guide further research.
文摘A novel influenza virus of the H7N9 subtype has infected more than 350 people in China since 19 February 2013. Evolutionary analysis indicates that the virus is a reassortant originated from H7, N9 and H9N2 avian influenza viruses, and bears some amino acids associated with mammalian receptor binding, raising concern over the possibility of a new influenza pandemic. Besides HA and NA, the mutation of the polymerase is known to have an important role in virulence, host adaptation and transmissibility in mammalians. In this article, the annotation of the polymerase protein domain associated with molecular function has been highlighted, suggesting the combination of RNA polymerase of H7N9 viruses is still not stable for host adaptation. In addition, the mutation hallmarks in polymerase gene of H7N9 are compared, providing the potential determinants of the evolution in the H7N9 influenza A virus.
文摘Transcription is a highly regulated cellular process in which dysfunction leads to disease. One level of regulation is chromatin structure which protects promoters from transcription factor binding. To circumvent this blockade, histone chaperones aid in displacement of nucleosomes. In particular, the histone chaperone complex HUCA, consisting of Hira, Ubn1, Cabin1, and ASF1a, replaces histone variant H3.1 with H3.3 in front of actively transcribing RNA Polymerase II (RNAPII). The 26S proteasome is a major degrader of proteins within the cell and plays both proteolytic and non- proteolytic roles in transcriptional regulation. One major role is the degradation of irreversibly arrested RNAPII. Several interactions between HUCA, the 26S proteasome, and RNAPII have been characterized individually;we now present observations from our lab and others which directly associate elongating RNAPII with the degradation machinery through observations of involvement with the HUCA complex. Our short report presents these ideas and discusses their importance in transcriptional regulation as well as implications in disease manifestation.
基金supported by the National Key RD program of China(No.2021YFA1502300)the National Natural Science Foundation of China(No.21733007)。
文摘Severe acute respiratory syndrome coronavirus 2(SARS-Co V-2) relies on the central molecular machine RNA-dependent RNA polymerase(Rd Rp) for the viral replication and transcription. Remdesivir at the template strand has been shown to effectively inhibit the RNA synthesis in SARS-Co V-2 Rd Rp by deactivating not only the complementary UTP incorporation but also the next nucleotide addition. However, the underlying molecular mechanism of the second inhibitory point remains unclear. In this work, we have performed molecular dynamics simulations and demonstrated that such inhibition has not directly acted on the nucleotide addition at the active site. Instead, the translocation of Remdesivir from +1 to-1 site is hindered thermodynamically as the posttranslocation state is less stable than the pre-translocation state due to the motif B residue G683. Moreover, another conserved residue S682 on motif B further hinders the dynamic translocation of Remdesivir due to the steric clash with the 1′-cyano substitution. Overall,our study has unveiled an alternative role of motif B in mediating the translocation when Remdesivir is present in the template strand and complemented our understanding about the inhibitory mechanisms exerted by Remdesivir on the RNA synthesis in SARS-Co V-2 Rd Rp.
文摘Anti-RNA Polymerase III has been recognized as an important autoantibody in Systemic Sclerosis and it is now included in the 2013 ACR/EULAR classification criteria for Systemic Sclerosis. With this manuscript we attempt to review the current data on anti-RNA polymerase II as it relates to Systemic Sclerosis.
文摘Baculoviruses are the only nuclear replicating DNA-containing viruses that encode their own DNA-directed RNA polymerase (RNAP). The baculovirus RNAP is specific for the transcription of genes expressed after virus DNA replication. It is composed of four subunits, making it the simplest multisubunit RNAP known. Two subunits contain motifs found at the catalytic center of other RNAPs and a third has capping enzyme functions. The function of the fourth subunit is not known. Structural studies on this unique RNAP will provide new insights into the functions of this enzyme and the regulation of viral genes and may be instrumental to optimize the baculovirus gene expression system.
基金This work was supported by a grant from the Major State Basic Research Development Program of China (No. 2002CB512904, 2002CB512903).
文摘Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. Methods DNA polymerase beta knock-down cell line was established via RNA interference as an experimental group. Normal human bronchial epithelial cells and cells transfected with the empty vector of pEGFP-C1 were used as controls. Cells were treated with different concentrations of hydroquinone (ranged from 10 μmol/L to 120 μmol/L) for 4 hours. MTT assay and Comet assay [single-cell gel electrophoresis (SCGE)] were performed respectively to detect the toxicity of hydroquinone. Results assay showed that DNA polymerase beta knock-down cells treated with different concentrations of hydroquinone had a lower absorbance value at 490 nm than the control cells in a dose-dependant manner. Comet assay revealed that different concentrations of hydroquinone caused more severe DNA damage in DNA polymerase beta knock-down cell line than in control cells and there was no significant difference in the two control groups. Conclusions Hydroquinone has significant toxicity to human bronchial epithelial cells and causes DNA damage. DNA polymerase beta knock-down cell line appears more sensitive to hydroquinone than the control cells. The results suggest that DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone.
基金The paper was support by a grant from the Ministry Youth Research of China,No.98-1-269
文摘AIM: To study persistence and replication of hepatitis C virus (HCV) in patients' peripheral blood mononuclear cells (PBMC) cultured in vitro. METHODS: Epstein Barr virus (EBV) was used to transform the hepatitis C virus from a HCV positive patient to permanent lymphoblastoid cell lines (LCL). Positive and negative HCV RNA strands of the cultured cells and growth media were detected by reverse transcriptase-polymerase chain reaction (RT-PCR) each month. Core and NS5 proteins of HCV were further tested using immunohistochemical SP method and in situ RT-PCR. RESULTS: HCV RNA positive strands were consistently detected the cultured cells for one year. The negative-strand RNA in LCL cells and the positive-strand RNA in supernatants were observed intermittently. Immunohistochemical results medicated expression of HCV NS3 and C proteins in LCL cytoplasm mostly. The positive signal of PCR product was dark blue and mainly localized to the LCL cytoplasm. The RT-PCR signal was eliminated by overnight RNase digestion but not DNase digestion. CONCLUSION: HCV may exist and remain functional in a cultured cell line for a long period.
文摘INTRODUCTIONAcute narcotizing pancreatitis usually takes a severe clinical course and is associated with multiple organ dysfunction .With the further understanding of pathophysiological events of acute pancreatisis and the therapeutic measuses taken by the clinicians ,the patients can pass through the critical carry stages ,and then the septic complication caused by rtanslocated bacteria, mostly gram-negative microbes from the intestines ensues[1].