Engineering DNA logic systems is considered as one of the most promising strategies for next-generation molecular computers.Owing to the inherent features of DNA,such as low cost,easy synthesis,and controllable hybrid...Engineering DNA logic systems is considered as one of the most promising strategies for next-generation molecular computers.Owing to the inherent features of DNA,such as low cost,easy synthesis,and controllable hybridization,various DNA logic devices with different functions have been developed in the recent decade.Besides,a variety of logic-programmed biological applications are also explored,which initiates a new chapter for DNA logic computing.Although this field has gained rapid developments,a systematical review that could not only elaborate the logic principles of diverse DNA logic devices but also outline recent representative works is urgently needed.In this review,we first elaborate the general classification and logical principle of diverse DNA logic devices,in which the operating strategy of these devices and representative examples are selectively presented.Then,we review state-of-the-art advancements in DNA computing based on different non-canonical DNA-nanostructures during the past decade,in which some classical works are summarized.After that,the innovative applications of DNA computing to logic-controlled bioanalysis,cell imaging,and drug load/delivery are selectively presented.Finally,we analyze current obstacles and suggest appropriate prospects for this area.展开更多
基金supported by the National Natural Science Foundation of China(21427811,21675151)starting support from Ocean University of China。
文摘Engineering DNA logic systems is considered as one of the most promising strategies for next-generation molecular computers.Owing to the inherent features of DNA,such as low cost,easy synthesis,and controllable hybridization,various DNA logic devices with different functions have been developed in the recent decade.Besides,a variety of logic-programmed biological applications are also explored,which initiates a new chapter for DNA logic computing.Although this field has gained rapid developments,a systematical review that could not only elaborate the logic principles of diverse DNA logic devices but also outline recent representative works is urgently needed.In this review,we first elaborate the general classification and logical principle of diverse DNA logic devices,in which the operating strategy of these devices and representative examples are selectively presented.Then,we review state-of-the-art advancements in DNA computing based on different non-canonical DNA-nanostructures during the past decade,in which some classical works are summarized.After that,the innovative applications of DNA computing to logic-controlled bioanalysis,cell imaging,and drug load/delivery are selectively presented.Finally,we analyze current obstacles and suggest appropriate prospects for this area.