Herein, we described a ratiometric strategy based on "chameleon" DNA-silver nanoclusters( DNA-AgNCs) fluorescent binary probes. The strategy was applied to detect high-risk human papillomavirus( HPV) DNA seq...Herein, we described a ratiometric strategy based on "chameleon" DNA-silver nanoclusters( DNA-AgNCs) fluorescent binary probes. The strategy was applied to detect high-risk human papillomavirus( HPV) DNA sequences, HPV-16. First, DNA-AgNCs were synthesized by a simple reduction method. The obtained nanoprobes showed typical yellow and red fluorescence of AgNCs. Upon the addition of HPV-16 DNA, the yellow fluorescence of AgNCs was reduced greatly, whereas tlie red fluorescence of AgNCs was increased. The concentration of HPV-16 DNA in the samples was characterized by the ratio of fluorescence intensity at 570 and 630 nm. Tlie ratiometric nanoprobes showed good selectivity for HPV-16 DNA, and the detection limit was 2 ninol/L. In addition, the practical applicability of this strategy was demonstrated by analysing the HPV-16 DNA in hiunan serum, illustrating its potential promise for clinical diagnosis.展开更多
New types of fluorescence DNA-based silver nanoclusters(DNAn-Ag NCs, n = 1, 2, 3c, 4c, 5c) were synthesized by C3T-rich nucleotides as templates. It is found that the assembly of DNAn-Ag NCs with nucleotides contain...New types of fluorescence DNA-based silver nanoclusters(DNAn-Ag NCs, n = 1, 2, 3c, 4c, 5c) were synthesized by C3T-rich nucleotides as templates. It is found that the assembly of DNAn-Ag NCs with nucleotides containing GAG sequences produce silver clusters with an enhanced red emission. Results indicate that GAG is the good enhancer of DNAn-Ag NCs constructed by C3T-rich nucleotides. The fluorescence titration reveals that enhanced red emission is sensitive to Fe(Ⅲ/Ⅱ) ions with the formation of non-emission nanoclusters. Thus, the GAG-containing nucleotide can be an enhancer for the emission of silver clusters with C3T-rich nucleotide and a mediator of the iron-cluster interplay.展开更多
The methods of Ultrasensitive silver staining for DNA in Polyacrylamide gels were described. In contrast to traditional radioisotopic methods, these silver -staining protocols are simple, quick and safety. The develop...The methods of Ultrasensitive silver staining for DNA in Polyacrylamide gels were described. In contrast to traditional radioisotopic methods, these silver -staining protocols are simple, quick and safety. The developmpnt and application are reviewed in this paper.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.21675047, 21735002, 21521063)the Key Point Research and Invention Program of Hunan Province, China(No.2017DK2011).
文摘Herein, we described a ratiometric strategy based on "chameleon" DNA-silver nanoclusters( DNA-AgNCs) fluorescent binary probes. The strategy was applied to detect high-risk human papillomavirus( HPV) DNA sequences, HPV-16. First, DNA-AgNCs were synthesized by a simple reduction method. The obtained nanoprobes showed typical yellow and red fluorescence of AgNCs. Upon the addition of HPV-16 DNA, the yellow fluorescence of AgNCs was reduced greatly, whereas tlie red fluorescence of AgNCs was increased. The concentration of HPV-16 DNA in the samples was characterized by the ratio of fluorescence intensity at 570 and 630 nm. Tlie ratiometric nanoprobes showed good selectivity for HPV-16 DNA, and the detection limit was 2 ninol/L. In addition, the practical applicability of this strategy was demonstrated by analysing the HPV-16 DNA in hiunan serum, illustrating its potential promise for clinical diagnosis.
基金Financial support of National Natural Science Foundation of China(No.21271090)Coordination Chemistry State key Laboratory Foundation of Nanjing University
文摘New types of fluorescence DNA-based silver nanoclusters(DNAn-Ag NCs, n = 1, 2, 3c, 4c, 5c) were synthesized by C3T-rich nucleotides as templates. It is found that the assembly of DNAn-Ag NCs with nucleotides containing GAG sequences produce silver clusters with an enhanced red emission. Results indicate that GAG is the good enhancer of DNAn-Ag NCs constructed by C3T-rich nucleotides. The fluorescence titration reveals that enhanced red emission is sensitive to Fe(Ⅲ/Ⅱ) ions with the formation of non-emission nanoclusters. Thus, the GAG-containing nucleotide can be an enhancer for the emission of silver clusters with C3T-rich nucleotide and a mediator of the iron-cluster interplay.
文摘The methods of Ultrasensitive silver staining for DNA in Polyacrylamide gels were described. In contrast to traditional radioisotopic methods, these silver -staining protocols are simple, quick and safety. The developmpnt and application are reviewed in this paper.