Hydrogen isotopic compositions of pyroxenes in peridotite xenoliths from the Nushan volcano, Anhui Province, SE China have been obtained using an ion probe (Cameca 1270). D/H ratios are constant within a single grain ...Hydrogen isotopic compositions of pyroxenes in peridotite xenoliths from the Nushan volcano, Anhui Province, SE China have been obtained using an ion probe (Cameca 1270). D/H ratios are constant within a single grain and among the different grains from the same sample. The lack of correlation between the D/H ratios and the hydrogen contents indicates that the hydrogen isotopic compositions are inherited from their mantle source. Combining with the δD values of coexisting amphiboles, it is inferred that the Nushan mantle experienced at least a two-stage metasomatic event. One was responsible for formation of amphiboles with extremely variable δD values, and the other was probably responsible for the high δD values (up to ?20‰) of some clinopyroxenes from peridotites, clinopyroxene and mica megacrysts. High δD values point to a subduction-related fluid being involved in one metasomatic event. The primary δD values (?90‰ to ?140‰) of the Nushan pyroxenes, together with data gleaned from the literature, suggest that the D/H ratios of the nominally anhydrous mineral reservoir might have differed from that of the other mantle hydrogen in being relatively depleted in D.展开更多
Granulitic lunar meteorites offer rare insights into the timing and nature of igneous,metamorphic and impact processes in the lunar crust.Accurately dating the different events recorded by these materials is very chal...Granulitic lunar meteorites offer rare insights into the timing and nature of igneous,metamorphic and impact processes in the lunar crust.Accurately dating the different events recorded by these materials is very challenging,however,due to low trace element abundances (e.g.Sm,Nd,Lu,Hf),rare micrometerscale U-Th-bearing accessory minerals,and disturbed Ar-Ar systematics following a multi-stage history of shock and thermal metamorphism.Here we report on micro-baddeleyite grains in granulitic mafic breccia NWA 3163 for the first time and show that targeted microstructural analysis (electron backscatter diffraction) and nanoscale geochronology (atom probe tomography) can overcome these barriers to lunar chronology.A twinned (-90°/<401>) baddeleyite domain yields a 232Th/208Pb age of 4328 ± 309 Ma,which overlaps with a robust secondary ion mass spectrometry (SIMS) 207Pb/206Pb age of 4308± 18.6 Ma and is interpreted here as the crystallization age for the igneous protolith of NWA 3163.A second microstructural domain,< 2 mm in width,contains patchy overprinting baddeleyite and yields a Th-Pb age of 2175± 143 Ma,interpreted as dating the last substantial impact event to affect the sample.This finding demonstrates the potential of combining microstructural characterization with nanoscale geochronology when resolving complex P-T-t histories in planetary materials,here yielding the oldest measured crystallization age for components of lunar granulite NWA 3163 and placing further constraints on the formation and evolution of lunar crust.展开更多
New ionization and detection techniques in mass spectrometry have been successfully applied for efficient analyses of complex biological systems. It is, however, still difficult to trace structural changes of a specif...New ionization and detection techniques in mass spectrometry have been successfully applied for efficient analyses of complex biological systems. It is, however, still difficult to trace structural changes of a specific molecular species in such systems. In the present study, a molecular probe strategy in combination with tandem electrospray ionization mass spectrometry has been examined using synthetic deuterium-labeled phosphatidylcholine hydroperoxide (PC-OOH/D3) and ethyl-labeled phosphatidylcholine having docosahexaenoic acid side chain (DHA-PC/Et). Administration of a mixture of PC-OOH/D3 and DHA-PC/Et to human blood and human skin surface, followed by extraction and analysis with collision-induced tandem electrospray ionization mass spectrometry demonstrated that metabolites of both molecular probes can be detected simultaneously with strict selectivity. The present method is also found to be useful in tracing chemical changes of the unstable docosahexaenoyl group on the surface of processed fish. The activity of phospholipase A2 can also be assessed using a phospholipid molecular probe with a linoleoyl and a deuteriomethyl group via selective detection of the lyso-phospholipid product by mass spectrometry. The advantage of the present method is that no chromatographic separation is required and analysis can be performed under strictly the same condition for different molecular probes, affording multiple data by one experiment. The present strategy may be useful for tracing time-dependent phenomena in dynamic phospholipid biochemistry, and can be widely used for any biological and food systems.展开更多
Stable isotope probing (SIP) was used to identify microbes stimulated by ethanol addition in microcosms containing two sediments collected from the bioremediation test zone at the US Department of Energy Oak Ridge s...Stable isotope probing (SIP) was used to identify microbes stimulated by ethanol addition in microcosms containing two sediments collected from the bioremediation test zone at the US Department of Energy Oak Ridge site, TN, USA. One sample was highly bioreduced with ethanol while another was less reduced. Microcosms with the respective sediments were amended with ^13C labeled ethanol and incubated for 7 days for SIP. Ethanol was rapidly converted to acetate within 24h accompanied with the reduction of nitrate and sulfate. The accumulation of acetate persisted beyond the 7 d period. Aqueous U did not decline in the microcosm with the reduced sediment due to desorption of U but continuously declined in the less reduced sample. Microbial growth and concomitant 13C-DNA production was detected when ethanol was exhausted and abundant acetate had accumulated in both microcosms. This coincided with U(VI) reduction in the less reduced sample. I3C originating from ethanol was ultimately utilized for growth, either directly or indirectly, by the dominant microbial community members within 7 days of incubation. The microbial community was comprised predominantly of known denitrifiers, sulfate-reducing bacteria and iron (Ⅲ) reducing bacteria including Desulfovibrio, Sphingomonas, Ferribacterium, Rhodanobacter, Geothrix, Thiobacillus and others, including the known U(VI)-redueing bacteria Acidovorax, Anaeromyxobacter, Desulfovibrio, Geobac- ter and Desulfosporosinus. The findings suggest that ethanol biostimulates the U(VI)-reducing microbial com- munity by first serving as an electron donor for nitrate, sulfate, iron (IH) and U(VI) reduction, and acetate which then functions as electron donor for U(VI) reduction and carbon source for microbial growth.展开更多
The hydrogen isotope composition of a mantle-derived mica megacryst from Cenozoic basanite from NUshan, Anhui Province has been determined by ion micro probe. The results demonstrate that δD and water content of the ...The hydrogen isotope composition of a mantle-derived mica megacryst from Cenozoic basanite from NUshan, Anhui Province has been determined by ion micro probe. The results demonstrate that δD and water content of the megacryst were heterogeneous on the micro scale, which resulted from reaction with meteoric water after being brought to the surface. The primary δD of mica megacrysts was about-23‰, suggesting the recycled crustal materials in its source. By combining these values with those of other researchers, it is believed that the hydrogen isotope composition of the mantle is heterogeneous at least on the large scale.展开更多
Dissolved inorganic carbon(DIC) is an important source of carbon in aquatic ecosystems,especially under conditions of increased frequency of cyanobacterial bloom. However, the importance of bacteria in direct or indir...Dissolved inorganic carbon(DIC) is an important source of carbon in aquatic ecosystems,especially under conditions of increased frequency of cyanobacterial bloom. However, the importance of bacteria in direct or indirect utilization of DIC has been widely overlooked in eutrophic freshwater. To identify the functional bacteria that can actively utilize DIC in eutrophic freshwater during cyanobacterial bloom, stable-isotope probing(SIP) experiments were conducted on eutrophic river water with or without inoculation with cyanobacteria(Microcystis aeruginosa). Our 16 S rRNA sequencing results revealed the significance of Betaproteobacteria, with similar relative abundance as Alphaproteobacteria, in the active assimilation of H^(13)CO^(3-) into their DNA directly or indirectly, which include autotrophic genera Betaproteobacterial ammonia-oxidizing bacteria. Other bacterial groups containing autotrophic members, e.g. Planctomycetes and Nitrospira, also presented higher abundance among free-living bacteria in water without cyanobacteria. Microcystis aggregates showed a preference for some specific bacterial members that may utilize H^(13)CO^(3-) metabolized by Microcystis as organic matter, e.g. Bacteroidetes(Cytophagales, Sphingobacteriales), and microcystindegrading bacteria Betaproteobacteria(Paucibacter/Burkholderiaceae). This study provides some valuable information regarding the functional bacteria that can actively utilize DIC in eutrophic freshwater.展开更多
in situ analyses of oxygen isotopes were carried out by ion micro-probe for zircons from 8 localities of HP-UHP metamorphic rocks including eclogites in the Dabie-Sulu terrane. The results show significant heterogene-...in situ analyses of oxygen isotopes were carried out by ion micro-probe for zircons from 8 localities of HP-UHP metamorphic rocks including eclogites in the Dabie-Sulu terrane. The results show significant heterogene-ity in d 18O values, with variation in different rocks from 8.5 to +9.7 and within one sample from 2 to 12. No measurable difference in d 18O was observed between proto-lith magmatic (detrital) zircons and metamorphic recrystal-lized zircons within analytical uncertainties from the ion micro-probe measurements. This indicates that the meta-morphic zircons have inherited the oxygen isotopic composi-tions of protolith zircons despite the HP to UHP metamor-phism. According to their protolith ages from zircon U-Pb in situ dating by the same ion micro-probe, two groups of oxy-gen isotope composition are recognized, with one having d 18O values of 6—7 for old protolith of 1.9—2.5 Ga ages and the other 0—2 for young protolith of 0.7—0.8 Ga ages. The latter anomalously low d 18O values of zircons in-dicate that the magma has had the obvious involvement of meteoric water when forming the young protolith of high-grade metamorphic rocks. This may be correlated with the snowball Earth event occurring in South China and the world elsewhere during the Neoproterozoic.展开更多
基金supported by the National Natural Science Foundation of China(Grants 49803002 and 40473007)Program for New Century Excellent Talents in University(NCET)the CAS-CNRS-CNR cooperative project.
文摘Hydrogen isotopic compositions of pyroxenes in peridotite xenoliths from the Nushan volcano, Anhui Province, SE China have been obtained using an ion probe (Cameca 1270). D/H ratios are constant within a single grain and among the different grains from the same sample. The lack of correlation between the D/H ratios and the hydrogen contents indicates that the hydrogen isotopic compositions are inherited from their mantle source. Combining with the δD values of coexisting amphiboles, it is inferred that the Nushan mantle experienced at least a two-stage metasomatic event. One was responsible for formation of amphiboles with extremely variable δD values, and the other was probably responsible for the high δD values (up to ?20‰) of some clinopyroxenes from peridotites, clinopyroxene and mica megacrysts. High δD values point to a subduction-related fluid being involved in one metasomatic event. The primary δD values (?90‰ to ?140‰) of the Nushan pyroxenes, together with data gleaned from the literature, suggest that the D/H ratios of the nominally anhydrous mineral reservoir might have differed from that of the other mantle hydrogen in being relatively depleted in D.
基金a postdoctoral fellowship supported by Hatch Ltd.NSERC Discovery Grants awarded to D.E.M and K.T.Tsupported by Royal Society Research Grant RG160237 awarded to J.R.D+1 种基金a Department of Museum Volunteers Acquisitions & Research Fund awarded to K.T.Tpartly supported by a grant from the Instrumentation and Facilities Program, Division of Earth Sciences, National Science Foundation
文摘Granulitic lunar meteorites offer rare insights into the timing and nature of igneous,metamorphic and impact processes in the lunar crust.Accurately dating the different events recorded by these materials is very challenging,however,due to low trace element abundances (e.g.Sm,Nd,Lu,Hf),rare micrometerscale U-Th-bearing accessory minerals,and disturbed Ar-Ar systematics following a multi-stage history of shock and thermal metamorphism.Here we report on micro-baddeleyite grains in granulitic mafic breccia NWA 3163 for the first time and show that targeted microstructural analysis (electron backscatter diffraction) and nanoscale geochronology (atom probe tomography) can overcome these barriers to lunar chronology.A twinned (-90°/<401>) baddeleyite domain yields a 232Th/208Pb age of 4328 ± 309 Ma,which overlaps with a robust secondary ion mass spectrometry (SIMS) 207Pb/206Pb age of 4308± 18.6 Ma and is interpreted here as the crystallization age for the igneous protolith of NWA 3163.A second microstructural domain,< 2 mm in width,contains patchy overprinting baddeleyite and yields a Th-Pb age of 2175± 143 Ma,interpreted as dating the last substantial impact event to affect the sample.This finding demonstrates the potential of combining microstructural characterization with nanoscale geochronology when resolving complex P-T-t histories in planetary materials,here yielding the oldest measured crystallization age for components of lunar granulite NWA 3163 and placing further constraints on the formation and evolution of lunar crust.
文摘New ionization and detection techniques in mass spectrometry have been successfully applied for efficient analyses of complex biological systems. It is, however, still difficult to trace structural changes of a specific molecular species in such systems. In the present study, a molecular probe strategy in combination with tandem electrospray ionization mass spectrometry has been examined using synthetic deuterium-labeled phosphatidylcholine hydroperoxide (PC-OOH/D3) and ethyl-labeled phosphatidylcholine having docosahexaenoic acid side chain (DHA-PC/Et). Administration of a mixture of PC-OOH/D3 and DHA-PC/Et to human blood and human skin surface, followed by extraction and analysis with collision-induced tandem electrospray ionization mass spectrometry demonstrated that metabolites of both molecular probes can be detected simultaneously with strict selectivity. The present method is also found to be useful in tracing chemical changes of the unstable docosahexaenoyl group on the surface of processed fish. The activity of phospholipase A2 can also be assessed using a phospholipid molecular probe with a linoleoyl and a deuteriomethyl group via selective detection of the lyso-phospholipid product by mass spectrometry. The advantage of the present method is that no chromatographic separation is required and analysis can be performed under strictly the same condition for different molecular probes, affording multiple data by one experiment. The present strategy may be useful for tracing time-dependent phenomena in dynamic phospholipid biochemistry, and can be widely used for any biological and food systems.
基金The authors thank Benli Chai for bioinformatic support and Anthony Gaca and Ami Smith for technical assistance in the laboratory. This study was funded by the US DOE Office of Science under grants DE-FG02-97ER62469, DE-FG02-97ER64398, AC05-00OR22725, and DE-SC0006783. Mary Beth Leigh was supported by a US National Science Foundation postdoctoral fellowship in Microbial Biology.
文摘Stable isotope probing (SIP) was used to identify microbes stimulated by ethanol addition in microcosms containing two sediments collected from the bioremediation test zone at the US Department of Energy Oak Ridge site, TN, USA. One sample was highly bioreduced with ethanol while another was less reduced. Microcosms with the respective sediments were amended with ^13C labeled ethanol and incubated for 7 days for SIP. Ethanol was rapidly converted to acetate within 24h accompanied with the reduction of nitrate and sulfate. The accumulation of acetate persisted beyond the 7 d period. Aqueous U did not decline in the microcosm with the reduced sediment due to desorption of U but continuously declined in the less reduced sample. Microbial growth and concomitant 13C-DNA production was detected when ethanol was exhausted and abundant acetate had accumulated in both microcosms. This coincided with U(VI) reduction in the less reduced sample. I3C originating from ethanol was ultimately utilized for growth, either directly or indirectly, by the dominant microbial community members within 7 days of incubation. The microbial community was comprised predominantly of known denitrifiers, sulfate-reducing bacteria and iron (Ⅲ) reducing bacteria including Desulfovibrio, Sphingomonas, Ferribacterium, Rhodanobacter, Geothrix, Thiobacillus and others, including the known U(VI)-redueing bacteria Acidovorax, Anaeromyxobacter, Desulfovibrio, Geobac- ter and Desulfosporosinus. The findings suggest that ethanol biostimulates the U(VI)-reducing microbial com- munity by first serving as an electron donor for nitrate, sulfate, iron (IH) and U(VI) reduction, and acetate which then functions as electron donor for U(VI) reduction and carbon source for microbial growth.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 803002 and 49773181).
文摘The hydrogen isotope composition of a mantle-derived mica megacryst from Cenozoic basanite from NUshan, Anhui Province has been determined by ion micro probe. The results demonstrate that δD and water content of the megacryst were heterogeneous on the micro scale, which resulted from reaction with meteoric water after being brought to the surface. The primary δD of mica megacrysts was about-23‰, suggesting the recycled crustal materials in its source. By combining these values with those of other researchers, it is believed that the hydrogen isotope composition of the mantle is heterogeneous at least on the large scale.
基金supported by the National Key Research and Development Program of China(No.2017YFD0800101)the State Natural Science Foundation of China(Nos.31600419,41571458,41471415)
文摘Dissolved inorganic carbon(DIC) is an important source of carbon in aquatic ecosystems,especially under conditions of increased frequency of cyanobacterial bloom. However, the importance of bacteria in direct or indirect utilization of DIC has been widely overlooked in eutrophic freshwater. To identify the functional bacteria that can actively utilize DIC in eutrophic freshwater during cyanobacterial bloom, stable-isotope probing(SIP) experiments were conducted on eutrophic river water with or without inoculation with cyanobacteria(Microcystis aeruginosa). Our 16 S rRNA sequencing results revealed the significance of Betaproteobacteria, with similar relative abundance as Alphaproteobacteria, in the active assimilation of H^(13)CO^(3-) into their DNA directly or indirectly, which include autotrophic genera Betaproteobacterial ammonia-oxidizing bacteria. Other bacterial groups containing autotrophic members, e.g. Planctomycetes and Nitrospira, also presented higher abundance among free-living bacteria in water without cyanobacteria. Microcystis aggregates showed a preference for some specific bacterial members that may utilize H^(13)CO^(3-) metabolized by Microcystis as organic matter, e.g. Bacteroidetes(Cytophagales, Sphingobacteriales), and microcystindegrading bacteria Betaproteobacteria(Paucibacter/Burkholderiaceae). This study provides some valuable information regarding the functional bacteria that can actively utilize DIC in eutrophic freshwater.
基金supported by the National Natural Science Foundation of China(Grants Nos.40033010 and 40273028)the State Key Basic Research Project(Grant No.G1999075503)
文摘in situ analyses of oxygen isotopes were carried out by ion micro-probe for zircons from 8 localities of HP-UHP metamorphic rocks including eclogites in the Dabie-Sulu terrane. The results show significant heterogene-ity in d 18O values, with variation in different rocks from 8.5 to +9.7 and within one sample from 2 to 12. No measurable difference in d 18O was observed between proto-lith magmatic (detrital) zircons and metamorphic recrystal-lized zircons within analytical uncertainties from the ion micro-probe measurements. This indicates that the meta-morphic zircons have inherited the oxygen isotopic composi-tions of protolith zircons despite the HP to UHP metamor-phism. According to their protolith ages from zircon U-Pb in situ dating by the same ion micro-probe, two groups of oxy-gen isotope composition are recognized, with one having d 18O values of 6—7 for old protolith of 1.9—2.5 Ga ages and the other 0—2 for young protolith of 0.7—0.8 Ga ages. The latter anomalously low d 18O values of zircons in-dicate that the magma has had the obvious involvement of meteoric water when forming the young protolith of high-grade metamorphic rocks. This may be correlated with the snowball Earth event occurring in South China and the world elsewhere during the Neoproterozoic.