Objective To investigate the effect of simulated microgravity and carbon ion irradiation (CIR) on spermatogenic cell apoptosis and sperm DNA damage to the testis of male Swiss Webster mice, and assess the risk assoc...Objective To investigate the effect of simulated microgravity and carbon ion irradiation (CIR) on spermatogenic cell apoptosis and sperm DNA damage to the testis of male Swiss Webster mice, and assess the risk associated with space environment. Methods Sperm DNA damage indicated by DNA fragmentation index (DFI) and high DNA stainability (HDS) was measured by sperm chromatin structure assay (SCSA). Apoptosis of spermatogenic cells was detected by annexin V-propidium iodide assay. Bax (the expression levels of p53) and proliferating cell nuclear antigen (PCNAI were measured by immunoblotting; p53 and PCNA were located by immunohistology. Results HDS, DFI, apoptosis index, and the expression levels of p53 and Bax were detected to be significantly higher in the experimental groups (P〈0.05) compared with those in the control group, however, the PCNA expression varied to a certain degree, p53- and PCNA- positive expression were detected in each group, mainly in relation to the spermatogonic cells and spermatocytes. Conclusion The findings of the present study demonstrated that simulated microgravity and CIR can induce spermatogenic cell apoptosis and sperm DNA damage. Sperm DNA damage may be one of the underlying mechanisms behind male fertility decline under space environment. These findings may provide a scientific basis for protectint~ astronauts and space traveler's health and safety.展开更多
Resveratrol, a natural phenolic compound, has been shown to prevent cardiovascular diseases and cancer and exhibit neuroprotective effects. In this study, we examined the neuroprotective and antJoxJdant effects of res...Resveratrol, a natural phenolic compound, has been shown to prevent cardiovascular diseases and cancer and exhibit neuroprotective effects. In this study, we examined the neuroprotective and antJoxJdant effects of resveratrol against hydrogen peroxide in embryonic neural stem cells. Hydrogen peroxide treatment alone increased catalase and glutathione peroxidase activities but did not change superoxide dismutase levels compared with hydrogen peroxide + resveratrol treatment. Nitric oxide synthase activity and concomitant nitric oxide levels increased in response to hydrogen peroxide treatment. Conversely, resveratrol treatment decreased nitric oxide synthase activity and nitric oxide levels. Resveratrol also attenuated hydrogen peroxide-induced nuclear or mitochondrial DNA damage. We propose that resveratrol may be a promising agent for protecting embryonic neural stem cells because of its potential to decrease oxidative stress by inducing higher activity of antioxidant enzymes, decreasing nitric oxide production and nitric oxide synthase activity, and alleviating both nuclear and mitochondrial DNA damage.展开更多
Avermectins are a new class of macrocyclic lactones derived from mycelia of the soil actinomycete, and are used as effective agricultural pesticides and antiparasitic agents. However, run-off from crops treated with a...Avermectins are a new class of macrocyclic lactones derived from mycelia of the soil actinomycete, and are used as effective agricultural pesticides and antiparasitic agents. However, run-off from crops treated with avermectins may contaminate various bodies of water, and accumulated to certain concentrations to impact the development of aquatic animals. Here, we tested the genotoxicity of three avermectins (abamectin, ABM; ivermectin, IVM; and emamectin benzoate, EMB) on Polypedates megacephalus tadpoles by the alkaline single-cell gel electrophoresis assay. Tadpoles were treated for 48 h in the laboratory with different concentrations of these three agents, 0.006, 0.012, 0.018, 0.024, 0.030 mg/L for ABM, 0.003, 0.006, 0.009, 0.012, 0.015 mg/L for IVM and 0.04, 0.06, 0.08, 0.10, 0.12 mg/L for EMB, and then measured their DNA damage by the Comet assay tail factor %. The concentrations of resulted in highly significant increases in DNA damage of the tadpoles were found above the concentration threshold of 0.012 mg/ L ABM, 0.003 mg/L IVM and 0.06 mg/L EMB and linear correlations between the intensity of DNA damage and the concentrations of these three avermectins. Our results showed clearly that avermectins caused dose dependent DNA damage on amphibian tadpoles, and there might be a control on the misuse of avermectins.展开更多
The APOBEC3(A3)family plays a pivotal role in the immune system by performing DNA/RNA single-strand deamination.Cancers mostly arise from the accumulation of chronic mutations in somatic cells,and recent research has ...The APOBEC3(A3)family plays a pivotal role in the immune system by performing DNA/RNA single-strand deamination.Cancers mostly arise from the accumulation of chronic mutations in somatic cells,and recent research has highlighted the A3 family as a major contributor to tumor-associated mutations,with A3A being a key driver gene leading to cancer-related mutations.A3A helps to defend the host against virus-induced tumors by editing the genome of cancer-associated viruses that invade the host.However,when it is abnormally expressed,it leads to persistent,chronic mutations in the genome,thereby fueling tumorigenesis.Notably,A3A is prominently expressed in innate immune cells,particularly macrophages,thereby affecting the functional state of tumor-infiltrating immune cells and tumor growth.Furthermore,the expression of A3A in tumor cells may directly affect their proliferation and migration.A growing body of research has unveiled that A3A is closely related to various cancers,which signifies the potential significance of A3A in cancer therapy.This paper mainly classifies and summarizes the evidence of the relationship between A3A and tumorigenesis based on the potential mechanisms,aiming to provide valuable references for further research on the functions of A3A and its development in the area of cancer therapy.展开更多
基金supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(KJCX2-YW-L08)the National Basic Research Program of China(2010CB834202)+1 种基金the National Natural Science Foundation of China(10835011)the Scientific Technology Research Projects of Gansu Province(0702NKDA045,0806RJYA020)
文摘Objective To investigate the effect of simulated microgravity and carbon ion irradiation (CIR) on spermatogenic cell apoptosis and sperm DNA damage to the testis of male Swiss Webster mice, and assess the risk associated with space environment. Methods Sperm DNA damage indicated by DNA fragmentation index (DFI) and high DNA stainability (HDS) was measured by sperm chromatin structure assay (SCSA). Apoptosis of spermatogenic cells was detected by annexin V-propidium iodide assay. Bax (the expression levels of p53) and proliferating cell nuclear antigen (PCNAI were measured by immunoblotting; p53 and PCNA were located by immunohistology. Results HDS, DFI, apoptosis index, and the expression levels of p53 and Bax were detected to be significantly higher in the experimental groups (P〈0.05) compared with those in the control group, however, the PCNA expression varied to a certain degree, p53- and PCNA- positive expression were detected in each group, mainly in relation to the spermatogonic cells and spermatocytes. Conclusion The findings of the present study demonstrated that simulated microgravity and CIR can induce spermatogenic cell apoptosis and sperm DNA damage. Sperm DNA damage may be one of the underlying mechanisms behind male fertility decline under space environment. These findings may provide a scientific basis for protectint~ astronauts and space traveler's health and safety.
基金funded by the Research Fund of Ege University,Project No. 05/ECZ/020
文摘Resveratrol, a natural phenolic compound, has been shown to prevent cardiovascular diseases and cancer and exhibit neuroprotective effects. In this study, we examined the neuroprotective and antJoxJdant effects of resveratrol against hydrogen peroxide in embryonic neural stem cells. Hydrogen peroxide treatment alone increased catalase and glutathione peroxidase activities but did not change superoxide dismutase levels compared with hydrogen peroxide + resveratrol treatment. Nitric oxide synthase activity and concomitant nitric oxide levels increased in response to hydrogen peroxide treatment. Conversely, resveratrol treatment decreased nitric oxide synthase activity and nitric oxide levels. Resveratrol also attenuated hydrogen peroxide-induced nuclear or mitochondrial DNA damage. We propose that resveratrol may be a promising agent for protecting embryonic neural stem cells because of its potential to decrease oxidative stress by inducing higher activity of antioxidant enzymes, decreasing nitric oxide production and nitric oxide synthase activity, and alleviating both nuclear and mitochondrial DNA damage.
基金granted by the Natural Science Foundation of Fujian, China (2015J01124)
文摘Avermectins are a new class of macrocyclic lactones derived from mycelia of the soil actinomycete, and are used as effective agricultural pesticides and antiparasitic agents. However, run-off from crops treated with avermectins may contaminate various bodies of water, and accumulated to certain concentrations to impact the development of aquatic animals. Here, we tested the genotoxicity of three avermectins (abamectin, ABM; ivermectin, IVM; and emamectin benzoate, EMB) on Polypedates megacephalus tadpoles by the alkaline single-cell gel electrophoresis assay. Tadpoles were treated for 48 h in the laboratory with different concentrations of these three agents, 0.006, 0.012, 0.018, 0.024, 0.030 mg/L for ABM, 0.003, 0.006, 0.009, 0.012, 0.015 mg/L for IVM and 0.04, 0.06, 0.08, 0.10, 0.12 mg/L for EMB, and then measured their DNA damage by the Comet assay tail factor %. The concentrations of resulted in highly significant increases in DNA damage of the tadpoles were found above the concentration threshold of 0.012 mg/ L ABM, 0.003 mg/L IVM and 0.06 mg/L EMB and linear correlations between the intensity of DNA damage and the concentrations of these three avermectins. Our results showed clearly that avermectins caused dose dependent DNA damage on amphibian tadpoles, and there might be a control on the misuse of avermectins.
文摘The APOBEC3(A3)family plays a pivotal role in the immune system by performing DNA/RNA single-strand deamination.Cancers mostly arise from the accumulation of chronic mutations in somatic cells,and recent research has highlighted the A3 family as a major contributor to tumor-associated mutations,with A3A being a key driver gene leading to cancer-related mutations.A3A helps to defend the host against virus-induced tumors by editing the genome of cancer-associated viruses that invade the host.However,when it is abnormally expressed,it leads to persistent,chronic mutations in the genome,thereby fueling tumorigenesis.Notably,A3A is prominently expressed in innate immune cells,particularly macrophages,thereby affecting the functional state of tumor-infiltrating immune cells and tumor growth.Furthermore,the expression of A3A in tumor cells may directly affect their proliferation and migration.A growing body of research has unveiled that A3A is closely related to various cancers,which signifies the potential significance of A3A in cancer therapy.This paper mainly classifies and summarizes the evidence of the relationship between A3A and tumorigenesis based on the potential mechanisms,aiming to provide valuable references for further research on the functions of A3A and its development in the area of cancer therapy.