For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over ti...For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over time.Decaying has been proved to enhance generalization as well as optimization.Other parameters,such as the network’s size,the number of hidden layers,drop-outs to avoid overfitting,batch size,and so on,are solely based on heuristics.This work has proposed Adaptive Teaching Learning Based(ATLB)Heuristic to identify the optimal hyperparameters for diverse networks.Here we consider three architec-tures Recurrent Neural Networks(RNN),Long Short Term Memory(LSTM),Bidirectional Long Short Term Memory(BiLSTM)of Deep Neural Networks for classification.The evaluation of the proposed ATLB is done through the various learning rate schedulers Cyclical Learning Rate(CLR),Hyperbolic Tangent Decay(HTD),and Toggle between Hyperbolic Tangent Decay and Triangular mode with Restarts(T-HTR)techniques.Experimental results have shown the performance improvement on the 20Newsgroup,Reuters Newswire and IMDB dataset.展开更多
Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks...Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks in the Software-Defined Networking(SDN)paradigm.SDN centralizes the control plane and separates it from the data plane.It simplifies a network and eliminates vendor specification of a device.Because of this open nature and centralized control,SDN can easily become a victim of DDoS attacks.We proposed a supervised Developed Deep Neural Network(DDNN)model that can classify the DDoS attack traffic and legitimate traffic.Our Developed Deep Neural Network(DDNN)model takes a large number of feature values as compared to previously proposed Machine Learning(ML)models.The proposed DNN model scans the data to find the correlated features and delivers high-quality results.The model enhances the security of SDN and has better accuracy as compared to previously proposed models.We choose the latest state-of-the-art dataset which consists of many novel attacks and overcomes all the shortcomings and limitations of the existing datasets.Our model results in a high accuracy rate of 99.76%with a low false-positive rate and 0.065%low loss rate.The accuracy increases to 99.80%as we increase the number of epochs to 100 rounds.Our proposed model classifies anomalous and normal traffic more accurately as compared to the previously proposed models.It can handle a huge amount of structured and unstructured data and can easily solve complex problems.展开更多
Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural N...Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.展开更多
以深度神经网络(deep neural network,DNN)为基础构建的自动驾驶软件已成为最常见的自动驾驶软件解决方案.与传统软件一样,DNN也会产生不正确输出或意想不到的行为,基于DNN的自动驾驶软件已经导致多起严重事故,严重威胁生命和财产安全....以深度神经网络(deep neural network,DNN)为基础构建的自动驾驶软件已成为最常见的自动驾驶软件解决方案.与传统软件一样,DNN也会产生不正确输出或意想不到的行为,基于DNN的自动驾驶软件已经导致多起严重事故,严重威胁生命和财产安全.如何有效测试基于DNN的自动驾驶软件已成为亟需解决的问题.由于DNN的行为难以预测和被人类理解,传统的软件测试方法难以适用.现有的自动驾驶软件测试方法通常对原始图片加入像素级的扰动或对图片整体进行修改来生成测试数据,所生成的测试数据通常与现实世界差异较大,所进行扰动的方式也难以被人类理解.为解决上述问题,提出测试数据生成方法IATG(interpretability-analysis-based test data generation),使用DNN的解释方法获取自动驾驶软件所做出决策的视觉解释,选择原始图像中对决策产生重要影响的物体,通过将其替换为语义相同的其他物体来生成测试数据,使生成的测试数据更加接近真实图像,其过程也更易于理解.转向角预测模型是自动驾驶软件决策模块重要组成部分,以此类模型为例进行实验,结果表明解释方法的引入有效增强IATG对转向角预测模型的误导能力.此外,在误导角度相同时IATG所生成测试数据比DeepTest更加接近真实图像;与semSensFuzz相比,IATG具有更高误导能力,且IATG中基于解释分析的重要物体选择技术可有效提高semSensFuzz的误导能力.展开更多
文摘For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over time.Decaying has been proved to enhance generalization as well as optimization.Other parameters,such as the network’s size,the number of hidden layers,drop-outs to avoid overfitting,batch size,and so on,are solely based on heuristics.This work has proposed Adaptive Teaching Learning Based(ATLB)Heuristic to identify the optimal hyperparameters for diverse networks.Here we consider three architec-tures Recurrent Neural Networks(RNN),Long Short Term Memory(LSTM),Bidirectional Long Short Term Memory(BiLSTM)of Deep Neural Networks for classification.The evaluation of the proposed ATLB is done through the various learning rate schedulers Cyclical Learning Rate(CLR),Hyperbolic Tangent Decay(HTD),and Toggle between Hyperbolic Tangent Decay and Triangular mode with Restarts(T-HTR)techniques.Experimental results have shown the performance improvement on the 20Newsgroup,Reuters Newswire and IMDB dataset.
文摘Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks in the Software-Defined Networking(SDN)paradigm.SDN centralizes the control plane and separates it from the data plane.It simplifies a network and eliminates vendor specification of a device.Because of this open nature and centralized control,SDN can easily become a victim of DDoS attacks.We proposed a supervised Developed Deep Neural Network(DDNN)model that can classify the DDoS attack traffic and legitimate traffic.Our Developed Deep Neural Network(DDNN)model takes a large number of feature values as compared to previously proposed Machine Learning(ML)models.The proposed DNN model scans the data to find the correlated features and delivers high-quality results.The model enhances the security of SDN and has better accuracy as compared to previously proposed models.We choose the latest state-of-the-art dataset which consists of many novel attacks and overcomes all the shortcomings and limitations of the existing datasets.Our model results in a high accuracy rate of 99.76%with a low false-positive rate and 0.065%low loss rate.The accuracy increases to 99.80%as we increase the number of epochs to 100 rounds.Our proposed model classifies anomalous and normal traffic more accurately as compared to the previously proposed models.It can handle a huge amount of structured and unstructured data and can easily solve complex problems.
文摘Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.
文摘以深度神经网络(deep neural network,DNN)为基础构建的自动驾驶软件已成为最常见的自动驾驶软件解决方案.与传统软件一样,DNN也会产生不正确输出或意想不到的行为,基于DNN的自动驾驶软件已经导致多起严重事故,严重威胁生命和财产安全.如何有效测试基于DNN的自动驾驶软件已成为亟需解决的问题.由于DNN的行为难以预测和被人类理解,传统的软件测试方法难以适用.现有的自动驾驶软件测试方法通常对原始图片加入像素级的扰动或对图片整体进行修改来生成测试数据,所生成的测试数据通常与现实世界差异较大,所进行扰动的方式也难以被人类理解.为解决上述问题,提出测试数据生成方法IATG(interpretability-analysis-based test data generation),使用DNN的解释方法获取自动驾驶软件所做出决策的视觉解释,选择原始图像中对决策产生重要影响的物体,通过将其替换为语义相同的其他物体来生成测试数据,使生成的测试数据更加接近真实图像,其过程也更易于理解.转向角预测模型是自动驾驶软件决策模块重要组成部分,以此类模型为例进行实验,结果表明解释方法的引入有效增强IATG对转向角预测模型的误导能力.此外,在误导角度相同时IATG所生成测试数据比DeepTest更加接近真实图像;与semSensFuzz相比,IATG具有更高误导能力,且IATG中基于解释分析的重要物体选择技术可有效提高semSensFuzz的误导能力.