The DNS over HTTPS(Hypertext Transfer Protocol Secure)(DoH)is a new technology that encrypts DNS traffic,enhancing the privacy and security of end-users.However,the adoption of DoH is still facing several research cha...The DNS over HTTPS(Hypertext Transfer Protocol Secure)(DoH)is a new technology that encrypts DNS traffic,enhancing the privacy and security of end-users.However,the adoption of DoH is still facing several research challenges,such as ensuring security,compatibility,standardization,performance,privacy,and increasing user awareness.DoH significantly impacts network security,including better end-user privacy and security,challenges for network security professionals,increasing usage of encrypted malware communication,and difficulty adapting DNS-based security measures.Therefore,it is important to understand the impact of DoH on network security and develop newprivacy-preserving techniques to allowthe analysis of DoH traffic without compromising user privacy.This paper provides an in-depth analysis of the effects of DoH on cybersecurity.We discuss various techniques for detecting DoH tunneling and identify essential research challenges that need to be addressed in future security studies.Overall,this paper highlights the need for continued research and development to ensure the effectiveness of DoH as a tool for improving privacy and security.展开更多
The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to b...The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.展开更多
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the bloo...The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.展开更多
域名系统(domain name system,DNS)作为互联网资源的名字标识服务,提供了从域名到IP地址的查询转换功能,是用户访问互联网应用的入口,也是用户侧安全威胁感知与防御的关键点。用户侧常见的DNS滥用及相关安全威胁有:网络钓鱼、域名不良...域名系统(domain name system,DNS)作为互联网资源的名字标识服务,提供了从域名到IP地址的查询转换功能,是用户访问互联网应用的入口,也是用户侧安全威胁感知与防御的关键点。用户侧常见的DNS滥用及相关安全威胁有:网络钓鱼、域名不良应用、恶意软件以及利用DNS进行攻击等。防护性DNS(protective DNS,PDNS)服务是一种利用DNS协议和架构的网络安全防护技术,通过对DNS查询进行威胁检测与处置,能够从源头上阻止用户对网络钓鱼网站、不良网站、恶意软件的访问。目前学界对PDNS服务还缺少系统的介绍与研究。对PDNS已有研究工作、应用现状及架构与功能进行系统梳理,对PDNS所涉及的关键技术进行系统综述,主要包括域名威胁处置技术、DNS异常检测技术、威胁情报管理技术和数据存储管理技术,分析PDNS目前面临的问题与挑战,并对PDNS未来发展趋势与研究方向提出了展望。展开更多
高校多校区一体化管理中,校区间人员流动频繁,如何保证学校师生在不同校区获得一致的上网体验成为一个难题。除了加快建设多活数据中心,实现重要信息系统的容灾备份体系之外,网络基础设施服务域名系统(Domain Name System,DNS)的一体化...高校多校区一体化管理中,校区间人员流动频繁,如何保证学校师生在不同校区获得一致的上网体验成为一个难题。除了加快建设多活数据中心,实现重要信息系统的容灾备份体系之外,网络基础设施服务域名系统(Domain Name System,DNS)的一体化部署也面临新挑战。以河海大学南京校区和常州校区为例,通过多活容灾网络架构等技术手段部署一体化智能DNS服务,有效解决网络拥塞和信息系统访问瓶颈的问题,同时提升DNS管理的便捷性和服务的安全可靠性,对相关应用场景具有一定参考价值。展开更多
AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to devel...AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to develop a source-free domain adaptation(SFDA)method for efficient and effective DR identification from unlabeled data.METHODS:A multi-SFDA method was proposed for DR identification.This method integrates multiple source models,which are trained from the same source domain,to generate synthetic pseudo labels for the unlabeled target domain.Besides,a softmax-consistence minimization term is utilized to minimize the intra-class distances between the source and target domains and maximize the inter-class distances.Validation is performed using three color fundus photograph datasets(APTOS2019,DDR,and EyePACS).RESULTS:The proposed model was evaluated and provided promising results with respectively 0.8917 and 0.9795 F1-scores on referable and normal/abnormal DR identification tasks.It demonstrated effective DR identification through minimizing intra-class distances and maximizing inter-class distances between source and target domains.CONCLUSION:The multi-SFDA method provides an effective approach to overcome the challenges in DR identification.The method not only addresses difficulties in data labeling and privacy issues,but also reduces the need for large amounts of labeled data required by deep learning methods,making it a practical tool for early detection and preservation of vision in diabetic patients.展开更多
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval...It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.展开更多
IPv6环境下的域名系统(DNS,domain name system)服务发展迅速,开展IPv6环境下DNS服务发现方法研究,对分析DNS服务在IPv6环境下的全球发展态势,提升服务可靠性具有非常重要的意义。基于IPv4和IPv6的合作解析关系,通过跨栈服务关联发现IPv...IPv6环境下的域名系统(DNS,domain name system)服务发展迅速,开展IPv6环境下DNS服务发现方法研究,对分析DNS服务在IPv6环境下的全球发展态势,提升服务可靠性具有非常重要的意义。基于IPv4和IPv6的合作解析关系,通过跨栈服务关联发现IPv6 DNS服务是一种有效的方法。然而,现有基于跨栈服务关联的IPv6 DNS服务发现方法受DNS探测包长度限制,探测能力有限。针对此问题,提出一种基于动态域名水印的IPv6 DNS服务发现方法。该方法利用自建权威服务器构建动态域名资源记录,绕过探测包长度限制。相比传统方法,该方法发现的IPv6 DNS服务数量提升接近98%;同时,通过解析水印日志记录,发现了解析器间存在大量解析依赖和集中化现象。展开更多
DNSSEC(domain name system security extensions)是一种域名系统(DNS,domain name system)的安全扩展协议,通过为DNS记录添加签名来增加DNS的安全性。域名递归服务器能否有效验证DNSSEC配置的正确性,并且在配置错误时返回相应的错误类...DNSSEC(domain name system security extensions)是一种域名系统(DNS,domain name system)的安全扩展协议,通过为DNS记录添加签名来增加DNS的安全性。域名递归服务器能否有效验证DNSSEC配置的正确性,并且在配置错误时返回相应的错误类型,对保障整个DNS的安全至关重要。为此,基于RFC 8914标准,选择了8种在权威侧可配置的DNSSEC错误类型,并在8个不同的子域分别配置了相应的DNSSEC错误。接下来,面向全球范围内的公共DNS服务器,筛选出其中支持DNSSEC的递归服务器作为探测对象,针对上述8个子域发起解析请求,对探测结果进行了收集、分析及可视化。探测结果表明,对于部分错误,多数支持DNSSEC的递归服务器可以正确地检测出域名的DNSSEC错误配置,并且返回相应的错误类型,如signature_expired、signature_not_valid、RRSIG_missing、DNSKEY_missing等错误。对当前全球范围内重要递归服务器检测DNSSEC错误配置的能力开展了大规模测量分析,可有效指导未来DNSSEC广泛部署中递归侧的能力建设。展开更多
基金Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under Grant Number RGP.2/373/45.
文摘The DNS over HTTPS(Hypertext Transfer Protocol Secure)(DoH)is a new technology that encrypts DNS traffic,enhancing the privacy and security of end-users.However,the adoption of DoH is still facing several research challenges,such as ensuring security,compatibility,standardization,performance,privacy,and increasing user awareness.DoH significantly impacts network security,including better end-user privacy and security,challenges for network security professionals,increasing usage of encrypted malware communication,and difficulty adapting DNS-based security measures.Therefore,it is important to understand the impact of DoH on network security and develop newprivacy-preserving techniques to allowthe analysis of DoH traffic without compromising user privacy.This paper provides an in-depth analysis of the effects of DoH on cybersecurity.We discuss various techniques for detecting DoH tunneling and identify essential research challenges that need to be addressed in future security studies.Overall,this paper highlights the need for continued research and development to ensure the effectiveness of DoH as a tool for improving privacy and security.
基金supported by the TARCC,Welch Foundation Award(I-1724)the Decherd Foundationthe Pape Adams Foundation,NIH grants NS092616,NS127375,NS117065,NS111776。
文摘The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.
基金supported by the National Natural Science Foundation of China,No.82104412(to TD)Shaanxi Provincial Key R&D Program,No.2023-YBSF-165(to TD)+1 种基金the Natural Science Foundation of Shaanxi Department of Science and Technology,No.2018JM7022(to FM)Shaanxi Provincial Key Industry Chain Project,No.2021ZDLSF04-11(to PW)。
文摘The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases.
文摘域名系统(domain name system,DNS)作为互联网资源的名字标识服务,提供了从域名到IP地址的查询转换功能,是用户访问互联网应用的入口,也是用户侧安全威胁感知与防御的关键点。用户侧常见的DNS滥用及相关安全威胁有:网络钓鱼、域名不良应用、恶意软件以及利用DNS进行攻击等。防护性DNS(protective DNS,PDNS)服务是一种利用DNS协议和架构的网络安全防护技术,通过对DNS查询进行威胁检测与处置,能够从源头上阻止用户对网络钓鱼网站、不良网站、恶意软件的访问。目前学界对PDNS服务还缺少系统的介绍与研究。对PDNS已有研究工作、应用现状及架构与功能进行系统梳理,对PDNS所涉及的关键技术进行系统综述,主要包括域名威胁处置技术、DNS异常检测技术、威胁情报管理技术和数据存储管理技术,分析PDNS目前面临的问题与挑战,并对PDNS未来发展趋势与研究方向提出了展望。
文摘高校多校区一体化管理中,校区间人员流动频繁,如何保证学校师生在不同校区获得一致的上网体验成为一个难题。除了加快建设多活数据中心,实现重要信息系统的容灾备份体系之外,网络基础设施服务域名系统(Domain Name System,DNS)的一体化部署也面临新挑战。以河海大学南京校区和常州校区为例,通过多活容灾网络架构等技术手段部署一体化智能DNS服务,有效解决网络拥塞和信息系统访问瓶颈的问题,同时提升DNS管理的便捷性和服务的安全可靠性,对相关应用场景具有一定参考价值。
文摘目的:探讨动态神经肌肉稳定技术(Dynamic Neuromuscular Stabilization,DNS)下的核心稳定训练结合局部针刺运动方案对脑卒中后偏瘫患者步行及姿势控制能力的影响。方法:选取2022年3月~2022年9月在郴州市第一人民医院就诊的脑卒中患者90例,按随机数字表分为对照组(n=45)和观察组(n=45),对照组采用常规康复训练,观察组在此基础上增加DNS核心稳定训练结合局部针刺运动疗法。治疗8周后,对比并分析治疗前后两组患者步态时空参数中步长、步速、步频参数;步态时相参数中双支撑相占步态周期百分比、患侧单支撑相占步态周期百分比、步行周期参数;脑卒中患者姿势控制量表(Posture assessment of stoke scale,PASS)量表、Tinnetti(Performance-Oriented Assessment of Mobility)量表及Fugl-Meyer下肢运动功能(FMA-LE)量表评分数据。结果:治疗后,两组步长、步速、步频参数、双支撑相占步态周期百分比、患侧单支撑相占步态周期百分比、Tinnetti评分、PASS评分及FMA评分均显著高于治疗前(P<0.05),步行周期显著低于治疗前(P<0.05),且观察组治疗后步长、步速、步频参数、双支撑相占步态周期百分比、患侧单支撑相占步态周期百分比、PASS评分、Tinnetti评分及FMALE评分均显著高于对照组(P<0.05),步行周期则低于对照组(P<0.05)。结论:DNS核心稳定训练结合局部针刺运动可提高脑卒中后偏瘫患者核心稳定及姿势控制能力,改善步行功能。
基金Supported by the Fund for Shanxi“1331 Project”and Supported by Fundamental Research Program of Shanxi Province(No.202203021211006)the Key Research,Development Program of Shanxi Province(No.201903D311009)+4 种基金the Key Research Program of Taiyuan University(No.21TYKZ01)the Open Fund of Shanxi Province Key Laboratory of Ophthalmology(No.2023SXKLOS04)Shenzhen Fund for Guangdong Provincial High-Level Clinical Key Specialties(No.SZGSP014)Sanming Project of Medicine in Shenzhen(No.SZSM202311012)Shenzhen Science and Technology Planning Project(No.KCXFZ20211020163813019).
文摘AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to develop a source-free domain adaptation(SFDA)method for efficient and effective DR identification from unlabeled data.METHODS:A multi-SFDA method was proposed for DR identification.This method integrates multiple source models,which are trained from the same source domain,to generate synthetic pseudo labels for the unlabeled target domain.Besides,a softmax-consistence minimization term is utilized to minimize the intra-class distances between the source and target domains and maximize the inter-class distances.Validation is performed using three color fundus photograph datasets(APTOS2019,DDR,and EyePACS).RESULTS:The proposed model was evaluated and provided promising results with respectively 0.8917 and 0.9795 F1-scores on referable and normal/abnormal DR identification tasks.It demonstrated effective DR identification through minimizing intra-class distances and maximizing inter-class distances between source and target domains.CONCLUSION:The multi-SFDA method provides an effective approach to overcome the challenges in DR identification.The method not only addresses difficulties in data labeling and privacy issues,but also reduces the need for large amounts of labeled data required by deep learning methods,making it a practical tool for early detection and preservation of vision in diabetic patients.
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金supported by the National Natural Science Foundation of China (12072365)the Natural Science Foundation of Hunan Province of China (2020JJ4657)。
文摘It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
文摘DNSSEC(domain name system security extensions)是一种域名系统(DNS,domain name system)的安全扩展协议,通过为DNS记录添加签名来增加DNS的安全性。域名递归服务器能否有效验证DNSSEC配置的正确性,并且在配置错误时返回相应的错误类型,对保障整个DNS的安全至关重要。为此,基于RFC 8914标准,选择了8种在权威侧可配置的DNSSEC错误类型,并在8个不同的子域分别配置了相应的DNSSEC错误。接下来,面向全球范围内的公共DNS服务器,筛选出其中支持DNSSEC的递归服务器作为探测对象,针对上述8个子域发起解析请求,对探测结果进行了收集、分析及可视化。探测结果表明,对于部分错误,多数支持DNSSEC的递归服务器可以正确地检测出域名的DNSSEC错误配置,并且返回相应的错误类型,如signature_expired、signature_not_valid、RRSIG_missing、DNSKEY_missing等错误。对当前全球范围内重要递归服务器检测DNSSEC错误配置的能力开展了大规模测量分析,可有效指导未来DNSSEC广泛部署中递归侧的能力建设。