This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the ...This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar.展开更多
传统的基于稀疏恢复的波达方向(direction of arrival,DOA)估计算法使用密集的采样网格,导致计算量显著增加,且对邻近入射信号的估计精度不高。针对这一问题,提出一种快速高精度DOA估计算法。该算法首先使用网格进化方法降低网格点总数...传统的基于稀疏恢复的波达方向(direction of arrival,DOA)估计算法使用密集的采样网格,导致计算量显著增加,且对邻近入射信号的估计精度不高。针对这一问题,提出一种快速高精度DOA估计算法。该算法首先使用网格进化方法降低网格点总数。然后,对噪声方差和信号功率进行二次估计,进而使用离网求根稀疏贝叶斯学习(off-grid root sparse Bayesian learning,OGRSBL)技术来实现入射角的精确估计。仿真表明,相比传统稀疏贝叶斯学习类算法,所提算法计算效率高,同时对紧邻信号有着更好的估计能力。展开更多
针对基于l1范数约束的稀疏表示DOA(Direction Of Arrival)估计算法对初始参数较为敏感的问题,提出了一种基于稀疏贝叶斯学习的DOA估计算法。首先通过信号来波方向的空间采样构造冗余字典,将阵列信号处理中的DOA估计信号模型转化为压缩...针对基于l1范数约束的稀疏表示DOA(Direction Of Arrival)估计算法对初始参数较为敏感的问题,提出了一种基于稀疏贝叶斯学习的DOA估计算法。首先通过信号来波方向的空间采样构造冗余字典,将阵列信号处理中的DOA估计信号模型转化为压缩感知中的稀疏重构信号模型。然后基于经验贝叶斯推理的方法,将待估计的稀疏系数值用方差未知的联合高斯分布描述,而未知的方差值决定了待估计系数的稀疏性。通过观测数据估计得到未知的方差,进而得到信号的DOA估计值。仿真结果表明,提出的算法有较高估计精度,并且对非相干信源和相干信源都具有较好的估计性能。展开更多
为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互...为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互质阵列进行垂直方向扩展构建了双平行互质阵列;其次,进行了非均匀虚拟阵列扩展,利用稀疏贝叶斯学习进行稀疏重构;然后,利用到达角相邻网格的能量关系,通过泰勒展开,进行了低复杂度的失配处理;最后,提出剔除规则和选择规则,融合两个方向子阵的估计结果。理论分析和仿真实验证明了所提阵列和DOA估计方法的有效性。展开更多
针对传统基于稀疏贝叶斯学习(sparse bayesian learning,SBL)的波达方向(direction of arrival,DOA)估计算法在低信噪比条件下性能不足的问题,提出了一种基于子空间拟合和块稀疏贝叶斯学习的离网DOA估计方法。首先对样本的协方差矩阵进...针对传统基于稀疏贝叶斯学习(sparse bayesian learning,SBL)的波达方向(direction of arrival,DOA)估计算法在低信噪比条件下性能不足的问题,提出了一种基于子空间拟合和块稀疏贝叶斯学习的离网DOA估计方法。首先对样本的协方差矩阵进行特征分解,获得信号的加权子空间,然后构造等价信号的稀疏表示模型并利用块稀疏贝叶斯算法进行参数求解,同时对于网格失配带来的建模误差,将空间域内的离散采样网格点作为动态参数,通过求解一个多项式,利用期望最大化算法迭代更新离散网格点的位置。仿真实验结果表明,相对于传统SBL算法,该方法具有更好的估计精度和空间分辨率。展开更多
针对实际声呐基阵水听器阵元间存在互耦导致阵列波达方向(direction of arrival,DOA)估计性能下降的问题,提出了一种阵列不确定互耦情况下的波达方向估计方法。基于稀疏贝叶斯学习(sparse Bayesian learning,SBL)模型,将空间域离散化为...针对实际声呐基阵水听器阵元间存在互耦导致阵列波达方向(direction of arrival,DOA)估计性能下降的问题,提出了一种阵列不确定互耦情况下的波达方向估计方法。基于稀疏贝叶斯学习(sparse Bayesian learning,SBL)模型,将空间域离散化为均匀的网格,并且引入离网格误差,针对阵元互耦,引入互耦系数向量;确定离网格误差和互耦系数向量的先验分布;使用贝叶斯学习的期望最大化算法,对未知参数进行迭代更新,得到目标空间谱。仿真结果表明,所提方法在阵元未知互耦较大情况下估计精度较高,多目标分辨能力较强。展开更多
基金supported by the National Natural Science Foundation of China(62071335,61931015,61831009)the Technological Innovation Project of Hubei Province of China(2019AAA061).
文摘This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar.
文摘针对基于l1范数约束的稀疏表示DOA(Direction Of Arrival)估计算法对初始参数较为敏感的问题,提出了一种基于稀疏贝叶斯学习的DOA估计算法。首先通过信号来波方向的空间采样构造冗余字典,将阵列信号处理中的DOA估计信号模型转化为压缩感知中的稀疏重构信号模型。然后基于经验贝叶斯推理的方法,将待估计的稀疏系数值用方差未知的联合高斯分布描述,而未知的方差值决定了待估计系数的稀疏性。通过观测数据估计得到未知的方差,进而得到信号的DOA估计值。仿真结果表明,提出的算法有较高估计精度,并且对非相干信源和相干信源都具有较好的估计性能。
文摘为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互质阵列进行垂直方向扩展构建了双平行互质阵列;其次,进行了非均匀虚拟阵列扩展,利用稀疏贝叶斯学习进行稀疏重构;然后,利用到达角相邻网格的能量关系,通过泰勒展开,进行了低复杂度的失配处理;最后,提出剔除规则和选择规则,融合两个方向子阵的估计结果。理论分析和仿真实验证明了所提阵列和DOA估计方法的有效性。
文摘针对传统基于稀疏贝叶斯学习(sparse bayesian learning,SBL)的波达方向(direction of arrival,DOA)估计算法在低信噪比条件下性能不足的问题,提出了一种基于子空间拟合和块稀疏贝叶斯学习的离网DOA估计方法。首先对样本的协方差矩阵进行特征分解,获得信号的加权子空间,然后构造等价信号的稀疏表示模型并利用块稀疏贝叶斯算法进行参数求解,同时对于网格失配带来的建模误差,将空间域内的离散采样网格点作为动态参数,通过求解一个多项式,利用期望最大化算法迭代更新离散网格点的位置。仿真实验结果表明,相对于传统SBL算法,该方法具有更好的估计精度和空间分辨率。
文摘针对实际声呐基阵水听器阵元间存在互耦导致阵列波达方向(direction of arrival,DOA)估计性能下降的问题,提出了一种阵列不确定互耦情况下的波达方向估计方法。基于稀疏贝叶斯学习(sparse Bayesian learning,SBL)模型,将空间域离散化为均匀的网格,并且引入离网格误差,针对阵元互耦,引入互耦系数向量;确定离网格误差和互耦系数向量的先验分布;使用贝叶斯学习的期望最大化算法,对未知参数进行迭代更新,得到目标空间谱。仿真结果表明,所提方法在阵元未知互耦较大情况下估计精度较高,多目标分辨能力较强。