Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with ...A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.展开更多
According to the characteristic of the echo of highfrequency ground wave radar(HF GWR), which is one-dimensional narrow band signal, a virtual direction of arrival(DOA) matrix is constructed at first, then the DOA...According to the characteristic of the echo of highfrequency ground wave radar(HF GWR), which is one-dimensional narrow band signal, a virtual direction of arrival(DOA) matrix is constructed at first, then the DOA of target evaluation is achieved by the method of resolving equations for two-dimensional DOA matrix. And this method bases on the redundancy information of a linear two-row array of antennae. Both the simulation process and the treatment results of measured data (in the case of low SNR echoes and short data series) are given at the end of this paper. By comparing with GPS data of the targets, the validity and practical applicability of the method in this paper is verified.展开更多
Nonuniform linear arrays,such as coprime array and nested array,have received great attentions because of the increased degrees of freedom(DOFs)and weakened mutual coupling.In this paper,inspired by the existing copri...Nonuniform linear arrays,such as coprime array and nested array,have received great attentions because of the increased degrees of freedom(DOFs)and weakened mutual coupling.In this paper,inspired by the existing coprime array,we propose a high-order extended coprime array(HoECA)for improved direction of arrival(DOA)estimation.We first derive the closed-form expressions for the range of consecutive lags.Then,by changing the inter-element spacing of a uniform linear array(ULA),three cases are proposed and discussed.It is indicated that the HoECA can obtain the largest number of consecutive lags when the spacing takes the maximum value.Finally,by comparing it with the other sparse arrays,the optimized HoECA enjoys a larger number of consecutive lags with mitigating mutual coupling.Simulation results are shown to evaluate the superiority of HoECA over the others in terms of DOF,mutual coupling leakage and estimation accuracy.展开更多
A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm ...A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.展开更多
A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two...A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.展开更多
A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of c...A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of covariance matrix of array measurement is viewed as the signal to be represented. By exploiting the geometrical property in steering vectors and the symmetric Toeplitz structure of Mutual Coupling Matrix (MCM), the redundant dictionaries containing the DOA information are constructed. Consequently, the optimization model based on joint sparse recovery is built and then is solved through Second Order Cone Program (SOCP) and Interior Point Method (IPM). The DOA estimates are gotten according to the positions of nonzeros elements. At last, computer simulations demonstrate the excellent performance of the proposed method.展开更多
In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp...In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.展开更多
Aiming at source number determination and direction of arrival(DOA) estimation under the case of time-varying source number,a method of DOA estimation with an unknown number of sources was proposed.Firstly,an algorith...Aiming at source number determination and direction of arrival(DOA) estimation under the case of time-varying source number,a method of DOA estimation with an unknown number of sources was proposed.Firstly,an algorithm based on crossvalidation technique was introduced to determine the number of sources.Then dynamic DOAs of source were estimated using an algorithm based on blind source separation(BSS) under the case that number of sources were unknown in advance and it was timevarying.The effectiveness of the proposed method was validated by simulation of time-invariant and time-varying numbers of source.Compared with other conventional methods,the proposed method has superior evaluation performances The proposed method can estimate m(the numbers of sensor) DOAs while other conventional methods estimate less than m DOAs.The R_(mse) of the proposed method in the case of low signal-to-noise ratio(SNR)(equal or lower than 30 dB) is smaller than 0.2 while R_(mse) of other conventional methods are greater than 0.8.展开更多
A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation tec...A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation techniques. The narrowband high- resolution algorithm is then used to get the DOA estimation. This technique does not require any preliminary knowledge of DOA angles. Simulation results demonstrate the effectiveness of the method.展开更多
A new method is presented to estimate two-dimensional (2-D) Direction-of-Arrival (DOA) angles of narrowband real-valued signals impinging on a L-shape Arrays(LA). The basic idea of the proposed method is to incr...A new method is presented to estimate two-dimensional (2-D) Direction-of-Arrival (DOA) angles of narrowband real-valued signals impinging on a L-shape Arrays(LA). The basic idea of the proposed method is to increase both the effective aperture size and the number of sensors by employing the conjugate invariance property of real-valued signals. Thus, the proposed method can provide a more precise DOA and detect more signals than the Cross-Correlation Matrix Method (CCMM). Numerical simulation results are presented to support the theory.展开更多
In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subar...In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.展开更多
相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研...相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研究。为了可以进行高DOF的DOA估计,学者们开始研究SLA的差分虚拟阵元,差分虚拟阵元对应的协方差矩阵相比原阵元对应的协方差矩阵维度更大,因而估计的DOF更高。当SLA的差分虚拟阵元连续取值时,可以利用已有阵元的接收信息,得到SLA的协方差矩阵,在该矩阵的基础之上构建差分虚拟阵元的协方差矩阵进而进行DOA估计。然而,当SLA的差分虚拟阵元存在孔洞时,即差分虚拟阵元不能连续取值时,不能直接利用重构的协方差矩阵进行DOA估计,需要恢复完全增广协方差矩阵的信息再进行DOA估计。对于该问题,本文基于矢量化后原协方差矩阵和虚拟差分阵协方差矩阵的误差分布情况,并结合完全增广协方差矩阵的低秩特性和半正定特性来构建优化问题。通过求解该问题来恢复维度更高的完全增广协方差矩阵。最后对该矩阵进行奇异值分解,利用多重信号分类(Multiple Signal Classification,MUSIC)算法就可以获得多源的空间谱。本文最后通过数值仿真试验验证了所提算法可以实现高DOF的DOA估计,并且相比于现有算法,本文所提算法对欠定DOA估计的效果更好,多源DOA估计的精度更高,产生的误差更小。展开更多
针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并...针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。展开更多
稀疏重构类算法在雷达目标参数估计中的应用一直是近年来的热门,但由于稀疏重构类算法的局限性,在进行目标波达方向(direction of arrival,DOA)估计时受到原子间的互相影响,从而使多目标测角精度降低。针对此问题,提出一种基于信号分离...稀疏重构类算法在雷达目标参数估计中的应用一直是近年来的热门,但由于稀疏重构类算法的局限性,在进行目标波达方向(direction of arrival,DOA)估计时受到原子间的互相影响,从而使多目标测角精度降低。针对此问题,提出一种基于信号分离迭代思想的松弛子空间追踪算法。首先求出回波信号与归一化后字典矩阵相关性最强的多个原子作为初步估计值,再利用初步估计的角度构建代价函数,反复估计直至代价函数收敛。仿真结果表明,所提算法减小了目标个数和相位差的影响,提高了多目标DOA估计的测角精度,同时相较于传统的松弛算法减少了运算量。展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.
基金This project was funded in part bythe U . S . Army
文摘A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.
基金Supported by the National High Technology and Devel-opment Program of China (2001AA631050)
文摘According to the characteristic of the echo of highfrequency ground wave radar(HF GWR), which is one-dimensional narrow band signal, a virtual direction of arrival(DOA) matrix is constructed at first, then the DOA of target evaluation is achieved by the method of resolving equations for two-dimensional DOA matrix. And this method bases on the redundancy information of a linear two-row array of antennae. Both the simulation process and the treatment results of measured data (in the case of low SNR echoes and short data series) are given at the end of this paper. By comparing with GPS data of the targets, the validity and practical applicability of the method in this paper is verified.
基金supported by the National Natural Science Foundation of China(62071476,62022091,61801488,61921001)the China Postdoctoral Science Foundation(2021T140788,2020M683728)+1 种基金the Science and Technology Innovation Program of Hunan Province(2020RC2041)the Research Program of National University of Defense Technology(ZK19-10,ZK20-33).
文摘Nonuniform linear arrays,such as coprime array and nested array,have received great attentions because of the increased degrees of freedom(DOFs)and weakened mutual coupling.In this paper,inspired by the existing coprime array,we propose a high-order extended coprime array(HoECA)for improved direction of arrival(DOA)estimation.We first derive the closed-form expressions for the range of consecutive lags.Then,by changing the inter-element spacing of a uniform linear array(ULA),three cases are proposed and discussed.It is indicated that the HoECA can obtain the largest number of consecutive lags when the spacing takes the maximum value.Finally,by comparing it with the other sparse arrays,the optimized HoECA enjoys a larger number of consecutive lags with mitigating mutual coupling.Simulation results are shown to evaluate the superiority of HoECA over the others in terms of DOF,mutual coupling leakage and estimation accuracy.
基金supported by the National Natural Science Foundation of China(617020986170209961331019)
文摘A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.
文摘A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.
基金Supported by the Innovation Foundation for Outstanding Postgraduates in the Electronic Engineering Institute of PLA (No. 2009YB005)
文摘A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of covariance matrix of array measurement is viewed as the signal to be represented. By exploiting the geometrical property in steering vectors and the symmetric Toeplitz structure of Mutual Coupling Matrix (MCM), the redundant dictionaries containing the DOA information are constructed. Consequently, the optimization model based on joint sparse recovery is built and then is solved through Second Order Cone Program (SOCP) and Interior Point Method (IPM). The DOA estimates are gotten according to the positions of nonzeros elements. At last, computer simulations demonstrate the excellent performance of the proposed method.
基金supported by the National Natural Science Foundation of China(61571149)the Natural Science Foundation of Heilongjiang Province(LH2020F017)+1 种基金the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Heilongjiang Province Key Laboratory of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01).
文摘In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.
基金National Natural Science Foundation of China(No.51309116)the Foundation of Fujian Education Committee for Distinguished Young Scholars,China(No.JA14169)+2 种基金the Scientific Research Foundations of Jimei University,China(Nos.ZQ2013001,ZC2013012)Open Project of Artificial Intelligence Key Laboratory of Sichuan Province,China(No.2014RYJ03)Natural Science Foundation of Fujian Province,China(No.2016J01736)
文摘Aiming at source number determination and direction of arrival(DOA) estimation under the case of time-varying source number,a method of DOA estimation with an unknown number of sources was proposed.Firstly,an algorithm based on crossvalidation technique was introduced to determine the number of sources.Then dynamic DOAs of source were estimated using an algorithm based on blind source separation(BSS) under the case that number of sources were unknown in advance and it was timevarying.The effectiveness of the proposed method was validated by simulation of time-invariant and time-varying numbers of source.Compared with other conventional methods,the proposed method has superior evaluation performances The proposed method can estimate m(the numbers of sensor) DOAs while other conventional methods estimate less than m DOAs.The R_(mse) of the proposed method in the case of low signal-to-noise ratio(SNR)(equal or lower than 30 dB) is smaller than 0.2 while R_(mse) of other conventional methods are greater than 0.8.
文摘A new direction-of-arrival (DOA) estimation algorithm for wideband sources is introduced, The new method obtains the output of the virtual arrays in the signal bandwidth using cubic spline function interpolation techniques. The narrowband high- resolution algorithm is then used to get the DOA estimation. This technique does not require any preliminary knowledge of DOA angles. Simulation results demonstrate the effectiveness of the method.
基金Supported by Program for New Century Excellent Talents in University
文摘A new method is presented to estimate two-dimensional (2-D) Direction-of-Arrival (DOA) angles of narrowband real-valued signals impinging on a L-shape Arrays(LA). The basic idea of the proposed method is to increase both the effective aperture size and the number of sensors by employing the conjugate invariance property of real-valued signals. Thus, the proposed method can provide a more precise DOA and detect more signals than the Cross-Correlation Matrix Method (CCMM). Numerical simulation results are presented to support the theory.
文摘稀疏阵列布阵灵活,增大阵列孔径的同时还能减少阵元间耦合,但基于稀疏阵列的传统波达方向估计会导致角度模糊混叠,带来估计精度差和稳健性不足的问题。针对以上问题,提出一种适用于稀疏阵列波达方向估计的加权截断奇异值投影(weighted truncated singular value projection,WT-SVP)的鲁棒矩阵填充算法。在填充迭代过程中根据奇异值的大小分配权重,突出大奇异值包含的阵列信息,减少小奇异值中不必要的噪声信息,从而优化传统奇异值投影算法。该算法可以实现稀疏阵列的孔洞信息恢复,对不连续阵元充分利用,同时WT-SVP填充算法实现了稀疏阵列波达方向估计的高精度、高分辨以及在低信噪比、低快拍时的高鲁棒性。
基金supported by the National Natural Science Foundation of China (NSFC) [grant number. 61871414]。
文摘In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.
文摘相比均匀线阵(Uniform Linear Array,ULA),相同阵元数目下稀疏线阵(Sparse Linear Array,SLA)的抗耦合效应更好,阵列孔径更大,到达方向(Direction of Arrival,DOA)估计的自由度(Degrees Of Freedom,DOF)更高,因而近年来得到了广泛的研究。为了可以进行高DOF的DOA估计,学者们开始研究SLA的差分虚拟阵元,差分虚拟阵元对应的协方差矩阵相比原阵元对应的协方差矩阵维度更大,因而估计的DOF更高。当SLA的差分虚拟阵元连续取值时,可以利用已有阵元的接收信息,得到SLA的协方差矩阵,在该矩阵的基础之上构建差分虚拟阵元的协方差矩阵进而进行DOA估计。然而,当SLA的差分虚拟阵元存在孔洞时,即差分虚拟阵元不能连续取值时,不能直接利用重构的协方差矩阵进行DOA估计,需要恢复完全增广协方差矩阵的信息再进行DOA估计。对于该问题,本文基于矢量化后原协方差矩阵和虚拟差分阵协方差矩阵的误差分布情况,并结合完全增广协方差矩阵的低秩特性和半正定特性来构建优化问题。通过求解该问题来恢复维度更高的完全增广协方差矩阵。最后对该矩阵进行奇异值分解,利用多重信号分类(Multiple Signal Classification,MUSIC)算法就可以获得多源的空间谱。本文最后通过数值仿真试验验证了所提算法可以实现高DOF的DOA估计,并且相比于现有算法,本文所提算法对欠定DOA估计的效果更好,多源DOA估计的精度更高,产生的误差更小。
文摘针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。
文摘稀疏重构类算法在雷达目标参数估计中的应用一直是近年来的热门,但由于稀疏重构类算法的局限性,在进行目标波达方向(direction of arrival,DOA)估计时受到原子间的互相影响,从而使多目标测角精度降低。针对此问题,提出一种基于信号分离迭代思想的松弛子空间追踪算法。首先求出回波信号与归一化后字典矩阵相关性最强的多个原子作为初步估计值,再利用初步估计的角度构建代价函数,反复估计直至代价函数收敛。仿真结果表明,所提算法减小了目标个数和相位差的影响,提高了多目标DOA估计的测角精度,同时相较于传统的松弛算法减少了运算量。