针对现有波达方向估计(Direction of Arrival, DOA)算法在低信噪比、多信源条件下估计精度不足、效率低等问题,提出了一种基于可分离替代函数算法的矢量水听器阵列多快拍DOA估计方法.首先对空域等角度均匀划分,构造出超完备冗余字典,建...针对现有波达方向估计(Direction of Arrival, DOA)算法在低信噪比、多信源条件下估计精度不足、效率低等问题,提出了一种基于可分离替代函数算法的矢量水听器阵列多快拍DOA估计方法.首先对空域等角度均匀划分,构造出超完备冗余字典,建立信号多快拍数据在空域的稀疏表示模型,然后采用可分离替代函数算法思想解决稀疏重构问题,求解出信号在空域的稀疏系数矩阵,最后将稀疏矩阵中行向量的范数映射到空域网格上,得到DOA估计值.仿真实验表明:该方法在低信噪比、多信源条件下拥有比子空间类算法、贪婪类算法以及现有凸优化类估计算法更高的DOA估计精度和更强的鲁棒性,与同类算法相比执行效率更高.展开更多
针对传统波达方向(Direction of Arrival, DOA)估计算法在低信噪比、小快拍的条件下估计精度不高的问题,提出了一种基于迭代收缩阈值算法的矢量水听器阵列多快拍DOA估计方法。首先,对空域进行等角度划分,构造超完备冗余字典,建立基于信...针对传统波达方向(Direction of Arrival, DOA)估计算法在低信噪比、小快拍的条件下估计精度不高的问题,提出了一种基于迭代收缩阈值算法的矢量水听器阵列多快拍DOA估计方法。首先,对空域进行等角度划分,构造超完备冗余字典,建立基于信号多快拍条件下的DOA估计模型,然后,采用迭代收缩阈值算法解决稀疏重构问题,求解出信号的稀疏系数矩阵,最后,将稀疏矩阵中行向量的范数映射到划分好的网格上,得到DOA估计值。仿真实验结果表明:该方法在低信噪比、小快拍条件下比OMP、 MUSIC和CBF等传统算法拥有更高的DOA估计精度和更强的鲁棒性。展开更多
针对阵元幅相误差使波达方向(direction of arrival,DOA)估计精度下降的问题,提出了一种阵元幅相误差和DOA同时估计算法。该算法通过在阵列一侧设置少量已校正阵元,改变了误差矩阵的结构,并根据改变后的矩阵特征构造了变换矩阵,通过构...针对阵元幅相误差使波达方向(direction of arrival,DOA)估计精度下降的问题,提出了一种阵元幅相误差和DOA同时估计算法。该算法通过在阵列一侧设置少量已校正阵元,改变了误差矩阵的结构,并根据改变后的矩阵特征构造了变换矩阵,通过构造的变换矩阵和子空间算法,实现了对阵元幅相误差和DOA的同时估计。此外,该算法能够解决信源功率存在较大差异时误差估计不准的问题,实现了高精度的误差和角度的同时估计。计算机仿真结果证明了所提算法的正确性和有效性。展开更多
针对相干信号波达方向(Direction of Arrival,DOA)估计,提出了一种改进的多重信号分类(Multiple Signal Classification,MUSIC)算法。首先,利用信号协方差矩阵的两个最大特征值所对应的特征向量,构造出两个Toeplitz矩阵;然后,利用前后...针对相干信号波达方向(Direction of Arrival,DOA)估计,提出了一种改进的多重信号分类(Multiple Signal Classification,MUSIC)算法。首先,利用信号协方差矩阵的两个最大特征值所对应的特征向量,构造出两个Toeplitz矩阵;然后,利用前后向空间平滑思想得到这两个矩阵的无偏估计并求和;最后,利用MUSIC算法从中估计出相干信号DOA。和已有方法相比,该方法无需损失阵列孔径且具有更优的DOA估计性能。展开更多
由于噪声的存在,现有的相干信号波达方向估计算法在低信噪比、小快拍数和小信号间隔条件下,性能下降严重。针对这一问题,本文提出一种基于总体最小二乘法——旋转不变子空间(Total Least Squares-Estimating Signal Parameter via Rotat...由于噪声的存在,现有的相干信号波达方向估计算法在低信噪比、小快拍数和小信号间隔条件下,性能下降严重。针对这一问题,本文提出一种基于总体最小二乘法——旋转不变子空间(Total Least Squares-Estimating Signal Parameter via Rotational Invariance Techniques,TLS-ESPRIT)算法的改进前后向空间平滑方法,对相干信源波达方向(Direction of Arrival,DOA)进行估计。该方法利用了信号的强相关性和噪声的弱相关性,通过时空相关协方差矩阵重构平滑后的阵列协方差矩阵,并将得到的新协方差矩阵应用于TLS-ESPRIT算法进行DOA估计。通过与其他几种传统的解相干算法建模仿真对比,该算法在相干源之间的DOA距离较近、信噪比(Signal Noise Ratio,SNR)较低和快拍数较小的情况下可以更好地估计波达方向,且具备更高的分辨率和精度。展开更多
柱面共形阵由于其载体曲率的影响,导致在利用经典MUSIC(Multiple Signal Classifica-tion)算法进行DOA(Direction-of-Arrival)估计时,导向矢量与噪声子空间不正交,算法性能严重下降甚至失效。在考虑载体遮挡效应的同时,结合阵元的方向性...柱面共形阵由于其载体曲率的影响,导致在利用经典MUSIC(Multiple Signal Classifica-tion)算法进行DOA(Direction-of-Arrival)估计时,导向矢量与噪声子空间不正交,算法性能严重下降甚至失效。在考虑载体遮挡效应的同时,结合阵元的方向性,通过对导向矢量进行重构,解决了导向矢量与噪声子空间不正交这一问题。对比子阵分割MUSIC算法,进行了MonteCarlo仿真验证,分析了有向阵元MUSIC算法的估计性能。最后以多层圆柱阵为例对4个从不同方向入射的信源进行了DOA估计仿真验证。仿真结果表明:该方法具有分辨力高,估计精度高的优点,证明了该方法的有效性和高估计性能。展开更多
文摘针对现有波达方向估计(Direction of Arrival, DOA)算法在低信噪比、多信源条件下估计精度不足、效率低等问题,提出了一种基于可分离替代函数算法的矢量水听器阵列多快拍DOA估计方法.首先对空域等角度均匀划分,构造出超完备冗余字典,建立信号多快拍数据在空域的稀疏表示模型,然后采用可分离替代函数算法思想解决稀疏重构问题,求解出信号在空域的稀疏系数矩阵,最后将稀疏矩阵中行向量的范数映射到空域网格上,得到DOA估计值.仿真实验表明:该方法在低信噪比、多信源条件下拥有比子空间类算法、贪婪类算法以及现有凸优化类估计算法更高的DOA估计精度和更强的鲁棒性,与同类算法相比执行效率更高.
文摘针对传统波达方向(Direction of Arrival, DOA)估计算法在低信噪比、小快拍的条件下估计精度不高的问题,提出了一种基于迭代收缩阈值算法的矢量水听器阵列多快拍DOA估计方法。首先,对空域进行等角度划分,构造超完备冗余字典,建立基于信号多快拍条件下的DOA估计模型,然后,采用迭代收缩阈值算法解决稀疏重构问题,求解出信号的稀疏系数矩阵,最后,将稀疏矩阵中行向量的范数映射到划分好的网格上,得到DOA估计值。仿真实验结果表明:该方法在低信噪比、小快拍条件下比OMP、 MUSIC和CBF等传统算法拥有更高的DOA估计精度和更强的鲁棒性。
文摘针对阵元幅相误差使波达方向(direction of arrival,DOA)估计精度下降的问题,提出了一种阵元幅相误差和DOA同时估计算法。该算法通过在阵列一侧设置少量已校正阵元,改变了误差矩阵的结构,并根据改变后的矩阵特征构造了变换矩阵,通过构造的变换矩阵和子空间算法,实现了对阵元幅相误差和DOA的同时估计。此外,该算法能够解决信源功率存在较大差异时误差估计不准的问题,实现了高精度的误差和角度的同时估计。计算机仿真结果证明了所提算法的正确性和有效性。
文摘针对相干信号波达方向(Direction of Arrival,DOA)估计,提出了一种改进的多重信号分类(Multiple Signal Classification,MUSIC)算法。首先,利用信号协方差矩阵的两个最大特征值所对应的特征向量,构造出两个Toeplitz矩阵;然后,利用前后向空间平滑思想得到这两个矩阵的无偏估计并求和;最后,利用MUSIC算法从中估计出相干信号DOA。和已有方法相比,该方法无需损失阵列孔径且具有更优的DOA估计性能。
文摘由于噪声的存在,现有的相干信号波达方向估计算法在低信噪比、小快拍数和小信号间隔条件下,性能下降严重。针对这一问题,本文提出一种基于总体最小二乘法——旋转不变子空间(Total Least Squares-Estimating Signal Parameter via Rotational Invariance Techniques,TLS-ESPRIT)算法的改进前后向空间平滑方法,对相干信源波达方向(Direction of Arrival,DOA)进行估计。该方法利用了信号的强相关性和噪声的弱相关性,通过时空相关协方差矩阵重构平滑后的阵列协方差矩阵,并将得到的新协方差矩阵应用于TLS-ESPRIT算法进行DOA估计。通过与其他几种传统的解相干算法建模仿真对比,该算法在相干源之间的DOA距离较近、信噪比(Signal Noise Ratio,SNR)较低和快拍数较小的情况下可以更好地估计波达方向,且具备更高的分辨率和精度。
文摘柱面共形阵由于其载体曲率的影响,导致在利用经典MUSIC(Multiple Signal Classifica-tion)算法进行DOA(Direction-of-Arrival)估计时,导向矢量与噪声子空间不正交,算法性能严重下降甚至失效。在考虑载体遮挡效应的同时,结合阵元的方向性,通过对导向矢量进行重构,解决了导向矢量与噪声子空间不正交这一问题。对比子阵分割MUSIC算法,进行了MonteCarlo仿真验证,分析了有向阵元MUSIC算法的估计性能。最后以多层圆柱阵为例对4个从不同方向入射的信源进行了DOA估计仿真验证。仿真结果表明:该方法具有分辨力高,估计精度高的优点,证明了该方法的有效性和高估计性能。