The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKS...The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders,particularly intellectual disability,although the precise mechanism involved has not yet been fully understood.Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane,thereby influencing synaptic signaling and the morphogenesis of dendritic spines.However,the function of CNKSR2 in the cytoplasm remains to be elucidated.In this study,we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2.Through a combination of bioinformatic analysis and cytological experiments,we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome.We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290.Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2.When we downregulated CNKSR2 expression in mouse neuroblastoma cells(Neuro 2A),we observed significant changes in the expression of numerous centrosomal genes.This manipulation also affected centrosome-related functions,including cell size and shape,cell proliferation,and motility.Furthermore,we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder.Our findings establish a connection between CNKSR2 and the centrosome,and offer new insights into the underlying mechanisms of neurodevelopmental disorders.展开更多
BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness o...BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness of drugs and poor patient outcomes.Long noncoding RNAs(lncRNAs)have been implicated in various pathophysiological processes of tumor cells,including chemotherapy resistance,yet the roles of many lncRNAs in CRC remain unclear.AIM To identify and analyze the lncRNAs involved in oxaliplatin resistance in CRC and to understand the underlying molecular mechanisms influencing this resistance.METHODS Gene Expression Omnibus datasets GSE42387 and GSE30011 were reanalyzed to identify lncRNAs and mRNAs associated with oxaliplatin resistance.Various bioinformatics tools were employed to elucidate molecular mechanisms.The expression levels of lncRNAs and mRNAs were assessed via quantitative reverse transcription-polymerase chain reaction.Functional assays,including MTT,wound healing,and Transwell,were conducted to investigate the functional implications of lncRNA alterations.Interactions between lncRNAs and trans-cription factors were examined using RIP and luciferase reporter assays,while Western blotting was used to confirm downstream pathways.Additionally,a xenograft mouse model was utilized to study the in vivo effects of lncRNAs on chemotherapy resistance.RESULTS LncRNA prion protein testis specific(PRNT)was found to be upregulated in oxaliplatin-resistant CRC cell lines and negatively correlated with homeodomain interacting protein kinase 2(HIPK2)expression.PRNT was demonstrated to sponge transcription factor zinc finger protein 184(ZNF184),which in turn could regulate HIPK2 expression.Altered expression of PRNT influenced CRC cell sensitivity to oxaliplatin,with overexpression leading to decreased sensitivity and decreased expression reducing resistance.Both RIP and luciferase reporter assays indicated that ZNF184 and HIPK2 are targets of PRNT.The PRNT/ZNF184/HIPK2 axis was implicated in promoting CRC progression and oxaliplatin resistance both in vitro and in vivo.CONCLUSION The study concludes that PRNT is upregulated in oxaliplatin-resistant CRC cells and modulates the expression of HIPK2 by sponging ZNF184.This regulatory mechanism enhances CRC progression and resistance to oxaliplatin,positioning PRNT as a promising therapeutic target for CRC patients undergoing oxaliplatin-based chemotherapy.展开更多
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understan...Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.展开更多
The mechanism and interaction among Rb/p16, Rb/E2F1 and HDAC1 proteins in gallbladder carcinoma were investigated. By using the immunoprecipitation method, the interactions among Rb, p16, E2F1, HDAC1 proteins in gallb...The mechanism and interaction among Rb/p16, Rb/E2F1 and HDAC1 proteins in gallbladder carcinoma were investigated. By using the immunoprecipitation method, the interactions among Rb, p16, E2F1, HDAC1 proteins in gallbladder carcinoma cell line (Mz-ChA-1) were studied. It was found that there were Rb and E2F1 proteins in the precipitates with anti-HDAC1, and there were HDAC1 and E2F1 proteins in the precipitate with anti-Rb. It was concluded that there are specific interactions among Rb, HDAC1 and E2F1 proteins in gallbladder carcinoma, indicating the existence of the direct Rb/E2F1/HDAC1 signal transduction pathway. There is no direct relationship between p16 proteins with Rb, HDAC1, and E2F1 proteins.展开更多
Abstract The broad-spectrum rice blast resistance gene Pik2-H4 was cloned from the highly resistant line H4. The full-length sequence of Pik2-H4 was 3 066 bp, which was different from the corresponding allele sequence...Abstract The broad-spectrum rice blast resistance gene Pik2-H4 was cloned from the highly resistant line H4. The full-length sequence of Pik2-H4 was 3 066 bp, which was different from the corresponding allele sequence of Nipponbare. Pik2-H4 belonged to NBS-LRR genes and coded a protein containing NB-ARC domain and leueine-rieh repeats. To find the interaction proteins with Pik2-H4 from the rice, the yeast two-hybrid system was used and three important proteins ( LOC- Os08939300, LOCOs03g25960 and LOC-Os09929130)were identified. The results could provide some new information for the mechanism of rice blast resistance mediated by Pik2-H4.展开更多
基金supported by the National Nature Science Foundation of China,No.32101020(to JL)the Natural Science Foundation of Shandong Province,Nos.ZR2020MC071(to JL),ZR2023MH327(to HZ)+1 种基金the Integrated Project of Major Research Plan of National Natural Science Foundation of China,No.92249303(to PL)the Natural Science Foundation of Qingdao,No.23-2-1-193-zyyd-jch(to HZ)。
文摘The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders,particularly intellectual disability,although the precise mechanism involved has not yet been fully understood.Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane,thereby influencing synaptic signaling and the morphogenesis of dendritic spines.However,the function of CNKSR2 in the cytoplasm remains to be elucidated.In this study,we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2.Through a combination of bioinformatic analysis and cytological experiments,we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome.We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290.Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2.When we downregulated CNKSR2 expression in mouse neuroblastoma cells(Neuro 2A),we observed significant changes in the expression of numerous centrosomal genes.This manipulation also affected centrosome-related functions,including cell size and shape,cell proliferation,and motility.Furthermore,we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder.Our findings establish a connection between CNKSR2 and the centrosome,and offer new insights into the underlying mechanisms of neurodevelopmental disorders.
基金Supported by Hebei Provincial Health Commission Youth Science and Technology Project,No.20210027.
文摘BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness of drugs and poor patient outcomes.Long noncoding RNAs(lncRNAs)have been implicated in various pathophysiological processes of tumor cells,including chemotherapy resistance,yet the roles of many lncRNAs in CRC remain unclear.AIM To identify and analyze the lncRNAs involved in oxaliplatin resistance in CRC and to understand the underlying molecular mechanisms influencing this resistance.METHODS Gene Expression Omnibus datasets GSE42387 and GSE30011 were reanalyzed to identify lncRNAs and mRNAs associated with oxaliplatin resistance.Various bioinformatics tools were employed to elucidate molecular mechanisms.The expression levels of lncRNAs and mRNAs were assessed via quantitative reverse transcription-polymerase chain reaction.Functional assays,including MTT,wound healing,and Transwell,were conducted to investigate the functional implications of lncRNA alterations.Interactions between lncRNAs and trans-cription factors were examined using RIP and luciferase reporter assays,while Western blotting was used to confirm downstream pathways.Additionally,a xenograft mouse model was utilized to study the in vivo effects of lncRNAs on chemotherapy resistance.RESULTS LncRNA prion protein testis specific(PRNT)was found to be upregulated in oxaliplatin-resistant CRC cell lines and negatively correlated with homeodomain interacting protein kinase 2(HIPK2)expression.PRNT was demonstrated to sponge transcription factor zinc finger protein 184(ZNF184),which in turn could regulate HIPK2 expression.Altered expression of PRNT influenced CRC cell sensitivity to oxaliplatin,with overexpression leading to decreased sensitivity and decreased expression reducing resistance.Both RIP and luciferase reporter assays indicated that ZNF184 and HIPK2 are targets of PRNT.The PRNT/ZNF184/HIPK2 axis was implicated in promoting CRC progression and oxaliplatin resistance both in vitro and in vivo.CONCLUSION The study concludes that PRNT is upregulated in oxaliplatin-resistant CRC cells and modulates the expression of HIPK2 by sponging ZNF184.This regulatory mechanism enhances CRC progression and resistance to oxaliplatin,positioning PRNT as a promising therapeutic target for CRC patients undergoing oxaliplatin-based chemotherapy.
基金funded by NIH-NIA R01AG061708 (to PHO)Patrick Grange Memorial Foundation (to PHO)+1 种基金A Long Swim (to PHO)CureSPG4 Foundation (to PHO)。
文摘Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
文摘The mechanism and interaction among Rb/p16, Rb/E2F1 and HDAC1 proteins in gallbladder carcinoma were investigated. By using the immunoprecipitation method, the interactions among Rb, p16, E2F1, HDAC1 proteins in gallbladder carcinoma cell line (Mz-ChA-1) were studied. It was found that there were Rb and E2F1 proteins in the precipitates with anti-HDAC1, and there were HDAC1 and E2F1 proteins in the precipitate with anti-Rb. It was concluded that there are specific interactions among Rb, HDAC1 and E2F1 proteins in gallbladder carcinoma, indicating the existence of the direct Rb/E2F1/HDAC1 signal transduction pathway. There is no direct relationship between p16 proteins with Rb, HDAC1, and E2F1 proteins.
基金Supported by Specialized Research Fund for the Doctoral Program of Higher Education"Resistance Mechanism of Rice Blast Resistance Gene Pik-m"(20124404120007)
文摘Abstract The broad-spectrum rice blast resistance gene Pik2-H4 was cloned from the highly resistant line H4. The full-length sequence of Pik2-H4 was 3 066 bp, which was different from the corresponding allele sequence of Nipponbare. Pik2-H4 belonged to NBS-LRR genes and coded a protein containing NB-ARC domain and leueine-rieh repeats. To find the interaction proteins with Pik2-H4 from the rice, the yeast two-hybrid system was used and three important proteins ( LOC- Os08939300, LOCOs03g25960 and LOC-Os09929130)were identified. The results could provide some new information for the mechanism of rice blast resistance mediated by Pik2-H4.