期刊文献+
共找到10,035篇文章
< 1 2 250 >
每页显示 20 50 100
Novel umami peptides from two Termitomyces mushrooms and molecular docking to the taste receptor T1R1/T1R3 被引量:1
1
作者 Lanyun Zhang Li Zhang +3 位作者 Jesus Pérez-Moreno Lu Bin Fengming Zhang Fuqiang Yu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期1055-1064,共10页
Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces... Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces aff.bulborhizus.Ten umami peptides from aqueous extracts were separated using a Sephadex G-15 gel filtration chromatography.The intense umami fraction was evaluated by both sensory evaluation and electronic tongue.They were identified as KLNDAQAPK,DSTDEKFLR,VGKGAHLSGEH,MLKKKKLA,SLGFGGPPGY,TVATFSSSTKPDD,AMDDDEADLLLLAM,VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK.Seven peptides,except VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK were selectively synthesized to verify their taste characteristics.All these 10 peptides had umami or salt taste.The 10 peptides were conducted by molecular docking to study their interaction with identified peptides and the umami taste receptor T1R1/T1R3.All these 10 peptides perfectly docked the active residues in the T1R3 subunit.Our results provide theoretical basis for the umami taste and address the umami mechanism of two wild edible Termitomyces mushrooms. 展开更多
关键词 TERMITOMYCES Non-volatile flavor compounds Umami peptides Taste characteristics Molecular docking
下载PDF
FitDockApp:基于模板的分子对接PyMOL插件图形化计算软件
2
作者 王有钧 杨羽婵 +2 位作者 刘扬 肖智雄 曹洋 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第3期716-725,共10页
目的分子对接在预测分子之间的结合模式和亲和力方面起着至关重要的作用,是计算结构生物学和计算机辅助药物设计研究的重要方法。本研究团队近期开发了一款基于模板的新型对接方法FitDock,当存在近似的蛋白质配体模板时,它在准确性和速... 目的分子对接在预测分子之间的结合模式和亲和力方面起着至关重要的作用,是计算结构生物学和计算机辅助药物设计研究的重要方法。本研究团队近期开发了一款基于模板的新型对接方法FitDock,当存在近似的蛋白质配体模板时,它在准确性和速度方面都超过了业界常用的分子对接方法。为了增强FitDock方法的可用性,使其在分子模拟领域得到更广泛的应用,很有必要发展图像化的软件工具。方法基于Python图像化编程,本文开发了FitDockApp,这是分子可视化软件PyMOL的插件软件。结果FitDockApp能够通过操作窗口界面,实现基于模板的分子对接和配体结构比对,实时显示预测三维结构,并提供将对接文件上传到实验室服务器获取最优模板的便利。此外,FitDockApp还具备批量对接功能。结论FitDockApp通过用户友好的界面简化了对接过程,并提供丰富的功能,帮助研究人员获得精确的对接结果。FitDockApp是一款免费软件,兼容Windows和Linux系统,可在http://cao.labshare.cn/fitdock/下载。 展开更多
关键词 分子对接 PyMOL Fitdock
下载PDF
Exploring the potential mechanism of WuFuYin against hypertrophic scar using network pharmacology and molecular docking
3
作者 Shu-Yang Zhang Song-Xue Guo +4 位作者 Lei-Lei Chen Jia-Yan Zhu Ming-Sheng Hou Jia-Ke Lu Xue-Xiang Shen 《World Journal of Clinical Cases》 SCIE 2024年第18期3505-3514,共10页
BACKGROUND Hypertrophic scar(HTS)is dermal fibroproliferative disorder,which may cause physiological and psychological problems.Currently,the potential mechanism of WuFuYin(WFY)in the treatment of HTS remained to be e... BACKGROUND Hypertrophic scar(HTS)is dermal fibroproliferative disorder,which may cause physiological and psychological problems.Currently,the potential mechanism of WuFuYin(WFY)in the treatment of HTS remained to be elucidated.AIM To explore the potential mechanism of WFY in treating HTS.METHODS Active components and corresponding targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform.HTSrelated genes were obtained from the GeneCards,DisGeNET,and National Center for Biotechnology Information.The function of targets was analyzed by performing Gene Ontology and Kyoto Encyclopaedia of Genes and Genome(KEGG)enrichment analysis.A protein+IBM-protein interaction(PPI)network was developed using STRING database and Cytoscape.To confirm the high affinity between compounds and targets,molecular docking was performed.RESULTS A total of 65 core genes,which were both related to compounds and HTS,were selected from multiple databases.PPI analysis showed that CKD2,ABCC1,MMP2,MMP9,glycogen synthase kinase 3 beta(GSK3B),PRARG,MMP3,and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma(PIK3CG)were the hub targets and MOL004941,MOL004935,MOL004866,MOL004993,and MOL004989 were the key compounds of WFY against HTS.The results of KEGG enrichment analysis demonstrated that the function of most genes were enriched in the PI3K-Akt pathway.Moreover,by performing molecular docking,we confirmed that GSK3B and 8-prenylated eriodictyol shared the highest affinity.CONCLUSION The current findings showed that the GSK3B and cyclin dependent kinase 2 were the potential targets and MOL004941,MOL004989,and MOL004993 were the main compounds of WFY in HTS treatment. 展开更多
关键词 WuFuYin Hypertrophic scar Network pharmacology Molecular docking Enrichment analysis
下载PDF
Mechanistic study of lipid metabolism disorders in diabetic kidney disease treated with GLQMP based on network pharmacology,molecular docking and in vitro experiments
4
作者 Shu-Man Liu Zi-Jie Yan +1 位作者 Man Xiao Yi-Qiang Xie 《Traditional Medicine Research》 2024年第2期42-51,共10页
Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effec... Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effective compounds and drug targets using Chinese medicine systemic pharmacology database and analysis platform and Chinese medicine molecular mechanism bioinformatics analysis tools;and searched for DKD targets using human online Mendelian genetics and gene cards.The potential targets of GLQMP for DKD were obtained through the intersection of drug targets and disease targets.Cytoscape software was applied to build herbal medicine-active compound-target-disease networks and analyze them;protein-protein interaction networks were analyzed using the STRING database platform;gene ontology and Kyoto Encyclopedia of Genes and Genomes were used for gene ontology and gene and genome encyclopedia to enrich potential targets using the DAVID database;and the AutoDock Vina 1.1.2 software for molecular docking of key targets with corresponding key components.In vitro experiments were validated by CCK8,oil red O staining,TC,TG,RT-qPCR,and Western blot.Results:Through network pharmacology analysis,a total of 99 potential therapeutic targets of GLQMP for DKD and the corresponding 38 active compounds were obtained,and 5 core compounds were identified.By constructing the protein-protein interaction network and performing network topology analysis,we found that PPARA and PPARG were the key targets,and then we molecularly docked these two key targets with the 38 active compounds,especially the 5 core compounds,and found that PPARA and PPARG had good binding ability with a variety of compounds.In vitro experiments showed that GLQMP was able to ameliorate HK-2 cell injury under high glucose stress,improve cell viability,reduce TC and TG levels as well as decrease the accumulation of lipid droplets,and RT-qPCR and Western blot confirmed that GLQMP was able to promote the expression levels of PPARA and PPARG.Conclusion:Overall,this study revealed the active compounds,important targets and possible mechanisms of GLQMP treatment for DKD,and conducted preliminary verification experiments on its correctness,provided novel insights into the treatment of DKD by GLQMP. 展开更多
关键词 Gualou Qumai pill diabetic kidney disease disorder of lipid metabolism network pharmacology molecular docking
下载PDF
Based on network pharmacology,molecular docking and experimental validation to reveal the potential molecular mechanism of quercetin for the treatment of diarrheal irritable bowel syndrome
5
作者 FENG Min-chao LUO Fang +5 位作者 XIE Sheng CHEN Zu-min TAN Jin-xuan LI Kai CHEN Guo-zhong WANG Dao-gang 《Journal of Hainan Medical University》 CAS 2024年第3期42-52,共11页
Objective:To explore the potential mechanism of action of quercetin in the treatment of diarrhea irritable bowel syndrome(IBS-D).Methods:The potential targets of quercetin were obtained from the TCMSP,SwissTar-getPred... Objective:To explore the potential mechanism of action of quercetin in the treatment of diarrhea irritable bowel syndrome(IBS-D).Methods:The potential targets of quercetin were obtained from the TCMSP,SwissTar-getPrediction,and BATMAN-TCM databases.The targets of IBS-D were obtained by searching the GeneCards database with"diarrhea irritable bowel syndrome"as the keyword,and the targets of quercetin and IBS-D were intersected.The PPI network was constructed by Cytoscape 3.7.1 software.The intersected targets were imported into the DAVID database for GO functional analysis and KEGG pathway enrichment analysis.The binding ability of quercetin to the core targets was observed using molecular docking.Based on this,we established an IBS-D rat model,administered quercetin for intervention,and experimentally validated the network pharmacology prediction results by HE staining and ELISA assay.Results:Network pharmacology analysis showed that TP53,TNF-α,AKT1,VEGF-A,IL-6 factors and MAPK,PI3K-Akt signaling pathway as the core targets and pathways of quercetin for the treatment of IBS-D.The results of animal experiments revealed that quercetin could inhibit the secretion of TP53,TNF-α,AKT1,VEGF-A,IL-1βand IL-6,reduce the inflammatory response and improve IBS-D.Conclusion:Quercetin could protect colon tissue by regulating the expression of TP53,TNF-α,AKT1,VEGF-A,IL-1βand IL-6,thereby treating IBS-D. 展开更多
关键词 QUERCETIN Diarrheal irritable bowel syndrome Network pharmacology Molecular docking Inflammatory re-sponse Mechanism of action
下载PDF
Potential pharmacological mechanisms of digallate in the treatment of enteritis based on network pharmacology and molecular docking
6
作者 Ning Tang Lian-Dong Zhao +3 位作者 Yang Zhao Yu-Meng Han Yue Cao Yan Wang 《Integrative Medicine Discovery》 2024年第7期1-10,共10页
Background:In order to investigate the possible pharmacological mechanism of digallate in Galla Chinensis for treating enteritis,providing reference for the search and exploration of effective drugs for treating enter... Background:In order to investigate the possible pharmacological mechanism of digallate in Galla Chinensis for treating enteritis,providing reference for the search and exploration of effective drugs for treating enteritis.Method:Traditional Chinese Medicines Systems Pharmacology Database and Analysis Platform,PharmMapper,DisGeNET,DrugBank,and GeneCards databases were used to obtain drug and disease-related target information.Gene ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were performed,and the main therapeutic pathways and targets were identified by combining protein-protein interaction networks and cytoHubba plug-in.Molecular docking was used to validate the results.Result:297 drug related targets,2436 disease related targets,and 66 target points related to digallate were predicted to be associated with enteritis.10 related signal pathways and 10 key genes were identified.Conclusion:Digallate may be utilized to treat enteritis by acting on similar pathways,such those related to pathways in cancer,lipid and atherosclerosis,proteoglycans in cancer,Rap1 signaling pathway,PI3K-Akt signaling pathway and other targets such as IGF1,EGFR,SRC,IGF1R,PPARG. 展开更多
关键词 digallate ENTERITIS network pharmacology molecular docking
下载PDF
Molecular Docking Studies on Streptomycin Antileishmanial Activity
7
作者 Todd A. Young Matthew George Jr. +3 位作者 Ayele Gugssa William M. Southerland Yayin Fang Clarence M. Lee 《Open Journal of Physical Chemistry》 2024年第2期36-48,共13页
Resistance to pentavalent antimonial drugs and the lack of vaccines make it urgent to find novel therapeutic options to treat Leishmaniasis, a tropical disease caused by the Leishmania protozoan parasite. The study re... Resistance to pentavalent antimonial drugs and the lack of vaccines make it urgent to find novel therapeutic options to treat Leishmaniasis, a tropical disease caused by the Leishmania protozoan parasite. The study reported here is to investigate if Streptomycin, an aminoglycoside, and Amphotericin B, the second-line treatment drug, exhibit antileishmanial activity through a similar mechanism. By using MOE (Molecular Operating Environment), we performed molecular docking studies on these drugs binding to a range of targets including ribosome targets in Leishmania and H. sapiens. Our study shows that the two drugs do not bind to the same pockets in Leishmania targets but to the same pockets in the human ribosome, with some differences in interactions. Moreover, our 2D maps indicated that Amphotericin B binds to the A-site in the human cytoplasmic ribosome, whereas streptomycin does not. 展开更多
关键词 LEISHMANIASIS STREPTOMYCIN Amphotericin B Molecular docking AMINOGLYCOSIDES ANTILEISHMANIAL
下载PDF
Exploring the molecular mechanism of action of curcumin for the treatment of diabetic retinopathy,using network pharmacology,molecular docking,and molecular dynamics simulation
8
作者 Yuan-Yuan Gan Yan-Mei Xu +4 位作者 Quan Shu Qi-Zhi Huang Tian-Long Zhou Ju-Fang Liu Wei Yu 《Integrative Medicine Discovery》 2024年第8期1-10,共10页
Background:Based on network pharmacology and molecular docking,the present study investigated the mechanism of curcumin(CUR)in diabetic retinopathy treatment.Methods:Based on the DisGeNET,Swiss TargetPrediction,GeneCa... Background:Based on network pharmacology and molecular docking,the present study investigated the mechanism of curcumin(CUR)in diabetic retinopathy treatment.Methods:Based on the DisGeNET,Swiss TargetPrediction,GeneCards,Online Mendelian Inheritance in Man,Gene Expression Omnibus,and Comparative Toxicogenomics Database,the intersection core targets of CUR and diabetic retinopathy were identified.The intersection target was imported into the STRING database to obtain the protein-protein interaction map.According to the Database for Annotation,Visualization and Integrated Discovery database,the intersected targets were enriched in Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes pathways.Then Cytoscape 3.9.1 is used to make the drug-target-disease-pathway network.The mechanism of CUR and diabetic retinopathy was further verified by molecular docking and molecular dynamics simulation.Results:There were 203 intersecting targets of CUR and diabetic retinopathy identified.1320 GO entries were enriched for GO functions,which were primarily involved in the composition of cells such as identical protein binding,protein binding,enzyme binding,etc.It was found that 175 pathways were enriched using Kyoto Encyclopedia of Genes and Genomes pathway enrichment methods,which were mainly included in the lipid and atherosclerosis,AGE-RAGE signaling pathway in diabetic complications,pathways in cancer,etc.In the molecular docking analysis,CUR was found to have a good ability to bind to the core targets of albumin,IL-1B,and IL-6.The binding of albumin to CUR was further verified by molecular dynamics simulation.Conclusion:As a result of this study,CUR may exert a role in the treatment of diabetic retinopathy through multi-target and multi-pathway regulation,which indicates a possible direction of future research. 展开更多
关键词 CURCUMIN diabetic retinopathy network pharmacology molecular docking molecular dynamics simulation
下载PDF
Therapeutic Effects and Potential Mechanisms of Glyasperin A against Myocardial Ischemia Based on Network Pharmacology and Molecular Docking
9
作者 Na LI Shunhuan CHEN +3 位作者 Xiang PU Yihui CHAI Yuqi YANG Lailai LI 《Asian Agricultural Research》 2024年第5期25-28,共4页
[Objectives]To explore the therapeutic effects and potential mechanisms of Glyasperin A(GAA)on myocardial ischemia(MI)based on network pharmacology and molecular docking.[Methods]The molecular structure of GAA was dow... [Objectives]To explore the therapeutic effects and potential mechanisms of Glyasperin A(GAA)on myocardial ischemia(MI)based on network pharmacology and molecular docking.[Methods]The molecular structure of GAA was downloaded from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),and all targets of GAA were predicted by converting 3D model molecules into SMILES online tool and Swiss target prediction.Genecards database and DisGeNET database were used to find the targets related to MI,and then Venny 2.1.0 was used to generate the corresponding Wayne diagram,and then Cytoscape 3.9.1 software was used to construct the protein-protein interaction(PPI)network.With the help of DAVID database and Microbiology,the selected core targets were enriched and analyzed by gene ontology(GO),biological process(BP),and Kyoto Encyclopedia of Genes and Genomes(KEGG),and then the molecular docking between GAA and core targets was verified by AutoDock and Pymol software.[Results]A total of 1883 MI targets were screened,and in the protein-protein interaction network,AKT1,PTGS2,PPARG,ESR1,GSK3B were the proteins with higher values.Gene ontology and KEEG enrichment analysis showed that the biological processes involved mainly included inflammatory response,negative regulation of gene expression,and response to exogenous stimuli.Signaling pathways mainly include IL-17 signaling pathway,HIF-1 signaling pathway,and so on.The results of molecular docking showed that the binding energy of GAA and core protein was less than-5 Kcal/mol in four groups.These indicated that GAA with good binding had a certain therapeutic effect on myocardial ischemia.[Conclusions]Based on the systematic network pharmacology method,this study predicts the basic pharmacological effects and potential mechanisms of GAA in the treatment of MI,and reveals that GAA may treat MI through multiple targets and signaling pathways.It is expected to provide a basis for further study of its pharmacological mechanisms. 展开更多
关键词 Network pharmacology Molecular docking Glyasperin A(GAA) Myocardial ischemia(MI)
下载PDF
Effects of ginkgo flavone aglycone on atherosclerosis based on network pharmacology,molecular docking,and in vitro experiments
10
作者 Miao Zhou Rui Li +4 位作者 Qin Li Yan-Li Huang Shi-Jing Liu Ji-Yu Chen Yan He 《TMR Modern Herbal Medicine》 CAS 2024年第2期1-10,共10页
Background:Ginkgo flavone aglycones(GA),a Ginkgo(Ginkgo biloba)extract,has been proven to have good biological activity in atherosclerosis(AS)treatment.Moreover,its active compounds and the corresponding mechanism for... Background:Ginkgo flavone aglycones(GA),a Ginkgo(Ginkgo biloba)extract,has been proven to have good biological activity in atherosclerosis(AS)treatment.Moreover,its active compounds and the corresponding mechanism for the treatment of AS remain unclear.Methods:To evaluate and identify the potential pharmacological mechanisms of GA in AS treatment,the program Cytoscape was used to generate network mappings of the GA-AS-potential target gene.GO and KEGG enrichment analyses were performed to further investigate the potential mechanism of AS and the pharmacological properties of GA.A molecular docking approach was utilized to determine the GA components that interact with Akt.In vitro experiments were carried out to identify the anti-atherosclerotic effects of GA by targeting Akt.Results:Network pharmacological research determined that the active components of GA(quercetin,kaempferol,and isorhamnetin)correlated with AS target genes such as AKT1,EGFR,SRC,ESR1,PTGS2,MMP9,KDR,GSK3B,APP,and MMP2,respectively.GO enrichment and KEGG analysis showed that PI3K-Akt signaling may play an important role in GA treatment.Molecular docking experiments indicated that quercetin,kaempferol,and isorhamnetin integrate into the binding pockets of the most potentially beneficial GA-AS target protein(Akt).Consequently,cell experiments were conducted to support the anti-atherosclerotic activity of GA on AS by inhibiting the phosphorylation of AKT1 and its downstream signaling molecules,which regulated the proliferation of HASMCs.Conclusion:Our results detailed GA's active ingredients,potential targets,and molecular basis against AS.GA may exert anti-atherosclerotic effects by suppressing Akt phosphorylation and inhibiting the proliferation of HASMCs.It also proposed a viable approach to determining the scientific foundation and therapeutic mechanism of Chinese herbal medicine extracts in disease therapy. 展开更多
关键词 network pharmacology ginkgo flavone aglycones ATHEROSCLEROSIS molecular docking KAEMPFEROL QUERCETIN ISORHAMNETIN
下载PDF
Exploring the effect and mechanisms of Epimedium on diabetic testicular injury using network pharmacology,molecular docking,and cell experiments
11
作者 Jun-Jun Wei Qiong-Yao Xu +4 位作者 Zhao-Wen Pan Yi-Wei Tu Wei Yu Lan Huang Wen-Liang Zha 《TMR Modern Herbal Medicine》 CAS 2024年第2期19-27,共9页
Background:Studying the potential targets and mechanisms of Epimedium for anti-diabetic testicular injury using network pharmacology,molecular docking,and cell experiments.Methods:Acquisition of major components and t... Background:Studying the potential targets and mechanisms of Epimedium for anti-diabetic testicular injury using network pharmacology,molecular docking,and cell experiments.Methods:Acquisition of major components and targets of Epimedium was based on TCMSP,TCMID,and Symmap databases and retrieval of diabetic testicular injury targets by OMIM,GeneCards,Pharmgkb,and Drugbank databases.Intersecting targets were obtained from the Venny 2.1.0 database and input SRTING data to construct a protein-protein interaction(PPI)network,and key targets were screened in Cytoscape 3.8.0 software.Then the Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses of intersecting targets were conducted through the DAVID database.Further,AutoDock software was used to verify docking between the main components and the core target proteins.In addition,a Cell Counting Kit-8(CCK-8)assay was used to determine the survival effect of quercetin,the main component of Epimedium,on TM4 sertoli-like cells exposed to palmitic acid(PA).Results:Quercetin,kaempferol and luteolin in epimedium were identified as the main components in the treatment of diabetic testicular injury.It has core target proteins including MMP9,AKT1,and TNF.The biological process mainly involves the regulation of the apoptotic signaling pathway.The key pathways of KEGG are the AGE-RAGE signaling pathway in diabetic complications,PI3K-Akt and MAPK signaling pathway.Molecular docking results showed that quercetin had the strongest binding ability to MMP9.Also,PA-challenged cells had a lower survival rate,which was alleviated by the administration of quercetin.Conclusion:Our findings suggest that Epimedium attenuates diabetes mellitus(DM)-induced testicular injury through AGE-RAGE,PI3K-Akt and MAPK signaling pathway.These insights offer a potential therapeutic strategy for managing DM-induced testicular injury,will be the basis for future clinical research. 展开更多
关键词 EPIMEDIUM diabetic testicular injury network pharmacology molecular docking
下载PDF
基于Maix-Ⅱ Dock摄像头的货运移动机器人的设计与实现
12
作者 龚明 徐涢基 +2 位作者 齐志远 林依婷 王燊炀 《沈阳工程学院学报(自然科学版)》 2024年第2期42-47,共6页
针对两地快速、高效地运输货物的问题,设计了一种货运移动机器人。货运移动机器人由STM32F103RCT6主控板、Maix-Ⅱ Dock(M2 dock)摄像头、OLED屏幕和XL4001可调降压模块等组成。货运移动机器人从地图“GO!”红色区域出发,到达红色“STOP... 针对两地快速、高效地运输货物的问题,设计了一种货运移动机器人。货运移动机器人由STM32F103RCT6主控板、Maix-Ⅱ Dock(M2 dock)摄像头、OLED屏幕和XL4001可调降压模块等组成。货运移动机器人从地图“GO!”红色区域出发,到达红色“STOP!”区域停车,途中不得撞到路线外红色长方体障碍物。货运移动机器人主控板使用STM32F103RCT6,图像识别部分使用M2 dock摄像头。M2 dock摄像头可以稳定高效地识别红色区域。通过测试,货运移动机器人可以快速且稳定地行驶完全程,并能够处理复杂的路况。该货运移动机器人的理论研究与设计能够应用于多种路况。 展开更多
关键词 STM32F103RCT6 M2 dock摄像头 移动机器人 五路灰度传感器 IIC通信 XL4001可调降压模块
下载PDF
Interaction of hispidin with pepsin:Multi-spectroscopic analyses and docking simulation
13
作者 Wen-Qiang Wang Si-Hua Fan +4 位作者 Xin-Huai Zhao Li Wang Ming-Hui Zhang Qiang Zhang Xue-Jun Gao 《Food and Health》 2024年第1期21-27,共7页
Hispidin is a pyranone compound found in edible and medicinal mushrooms of the Phellinus and Inonotus genera.This investigation used fluorescence spectroscopy,UV absorption spectroscopy,and molecular docking to examin... Hispidin is a pyranone compound found in edible and medicinal mushrooms of the Phellinus and Inonotus genera.This investigation used fluorescence spectroscopy,UV absorption spectroscopy,and molecular docking to examine the interaction of hispidin with pepsin.The Stern-Volmer method was used to perform the fluorescence quenching measurements at different temperatures(298 K,303 K,and 310 K).According to the findings,hispidin induced a static quenching mechanism in pepsin that resulted in the creation of a hispidin-pepsin complex with binding constants(Ka)ranging from 9.56×10^(4) to 3.45×10^(5) L mol^(-1).The positive values ofΔH(84.6 kJ mol-1)andΔS(337.9 J mol^(-1) K^(-1))demonstrated that hydrophobic forces contributed to forming the hispidin-pepsin complex.The findings of UV-vis absorption,synchronous fluorescence,and 3D fluorescence spectraspectra demonstrated that hispidin altered the conformation and microenvironment of pepsin.According to the analysis of molecular docking,hispidin got into the pepsin's active cavity.The research clarifies the molecular mechanisms by which hispidin binds to pepsin and helps understand its possible biological activity in vivo. 展开更多
关键词 hispidin PEPSIN SPECTROSCOPY molecular docking
下载PDF
Predicting bioactive compounds and cancer-related molecular targets of lotus seedpod (Receptaculum Nelumbinis) based on network pharmacology and molecular docking
14
作者 Jian-Lin Shen Meng-Tong Zhang +8 位作者 Fei Li Jia-Yu Huang Quan-Sheng Xu Han-Yue Zhang Jun Zhang Jing Li Yan-Ping Li Qi Zou Xiao-Yin Wang 《Food and Health》 2024年第2期14-41,共28页
Background:Lotus seedpod(Receptaculum Nelumbinis)is the abundant by-products produced during lotus seed processing,and the sources are usually considered to be wastes and are abandoned outdoors or incinerated.This stu... Background:Lotus seedpod(Receptaculum Nelumbinis)is the abundant by-products produced during lotus seed processing,and the sources are usually considered to be wastes and are abandoned outdoors or incinerated.This study aims at predicting its bioactive compounds and cancer-related molecular targets against six cancers,including lung cancer,gastric cancer,liver cancer,breast cancer,ovarian cancer and cervical cancer.Methods:Network pharmacology and molecular docking methods were performed.Results:Network pharmacology results indicated that 14 core compounds(liensinine,tetrandrine,lysicamine,tricin,sanleng acid,cireneol G,ricinoleic acid,linolenic acid,5,7-dihydroxycoumarin,apigenin,luteolin,morin,quercetin and isorhamnetin)and 10 core targets(AKT1,ESR1,HSP90AA1,JUN,MAPK1,MAPK3,PIK3CA,PIK3R1,SRC and STAT3)were screened for lotus seedpod against the six cancers.Molecular docking analysis suggested that the binding abilities between the core compounds and the core targets were mostly strong.GO analysis revealed that the intersected targets between the bioactive compounds of lotus seedpod and the six cancers were significantly related to biological processes,cell compositions and molecular functions.KEGG analysis showed that PI3K-Akt,TNF,Ras,MAPK,HIF-1 and C-type lectin receptor signaling pathways were notably involved in the anti-cancer activities of lotus seedpod against the six cancers.Conclusions:14 core compounds and 10 core targets were screened for lotus seedpod against lung cancer,gastric cancer,liver cancer,breast cancer,ovarian cancer and cervical cancer.This study supports the application of lotus seedpod in treating cancers,and promotes the recycling and the high-value utilization. 展开更多
关键词 Lotus seedpod ANTI-CANCER Bioactive compounds Molecular targets Network pharmacology Molecular docking.
下载PDF
Study on the mechanism of SND in the treatment of anxiety disorders based on network pharmacology, molecular docking and experiment validation
15
作者 Fei-Yan Wang Ping Yuan +7 位作者 Mei-Ling Zheng Xiao-Di Guo Long Li Jin Wang Shan Miao Ya-Jun Shi Shan-Bo Ma Xiao-Peng Shi 《Pharmacology Discovery》 2024年第2期10-23,共14页
Background:Sini decoction(SND)is a classic traditional Chinese medicine(TCM)formulation that can be used to treat anxiety-related disorders,but the active substance and underlying molecular mechanism of its anxiolytic... Background:Sini decoction(SND)is a classic traditional Chinese medicine(TCM)formulation that can be used to treat anxiety-related disorders,but the active substance and underlying molecular mechanism of its anxiolytic effects are unknown.In this study,network pharmacology,molecular docking research and experimental verification methods were used to preliminarily explore the bioactive compounds and potential target mechanisms of SND anxiolytic.Methods:The active components and corresponding targets of SND were collected by TCMSP.GeneCards,OMIM,PharmGkb,TTD and Drugbank were used to search for the targets of anxiety disorders.The core target of SND in the treatment of anxiety was screened by PPI.R language was used to analyze the intersection targets of SND in the treatment of anxiety disorders by GO and KEGG enrichment analysis.AutoDock Vina was used for molecular docking,and Discovery Studio was used for visual conformation analysis after docking.The anti-anxiety effect and molecular mechanism of SND were studied by in vivo experiment.Results:Based on network pharmacological analysis,we obtained 112 active ingredients and 350 effective targets related to anxiety from SND.In PPI analysis,26 targets such as STAT3,MAPK3,MAPK1,MAPK14,SRC,HSP90AA1,TP53 and PIK3CA were identified as core targets.GO and KEGG analysis showed that the anxiolytic mechanism of SND may be related to the neuroactive ligand-receptor interaction pathway and inflammatory pathway.Molecular docking showed that quercetin,naringenin,licochalcone A had high affinity with JAK2,MAPK14 and MAPK3.Animal experiments have shown that SND reverses the upregulation of GluN2B(NMDAR)and GluA1(AMPAR)proteins,and SND improves anxiety disorders by regulating glutamate transmitter levels,which may be related to neuroactive ligand-receptor interaction pathways,particularly glutamate receptors.Conclusion:This study shows that SND can improve FS-induced behavioral changes in mice and can modulate hippocampal synapse-associated protein defects,partially reversing glutamate receptor expression through the neuroactive ligand-receptor interaction pathway,and further improved anxiety disorders.At the same time,combined with network pharmacology and molecular docking,the key components,core targets and related pathways of SND are discussed,which shows that the active components of SND play an effective role in anxiety through multi-targets and multi-pathways,which provides a reference for the material basis and mechanism of SND. 展开更多
关键词 SND anxiety disorders network pharmacology molecular docking pharmacological mechanisms
下载PDF
The mechanism of Callistephus chinensis flavonoid compounds in the treatment of diabetes using network pharmacology and molecular docking
16
作者 Mingyuan Yuan Xiaoli Wang +1 位作者 Ziqi Sun Xiaoshu Zhang 《Journal of Polyphenols》 2024年第1期11-19,共9页
The purpose of this project is used for exploring the mechanism of Callistephus chinensis in the treatment of diabetes by network pharmacology and molecular docking methods.The target of Callistephus chinensis was obt... The purpose of this project is used for exploring the mechanism of Callistephus chinensis in the treatment of diabetes by network pharmacology and molecular docking methods.The target of Callistephus chinensis was obtained from SwissTargetPrediction database,while the target related to diabetes was obtained from GeneCards and OMIM databases.The target was added in String database to build the protein interaction network.GO biological process enrichment analysis and KEGG pathway enrichment analysis were carried out by Metascape software,then the target-pathway network was constructed.Molecular docking was carried out in Discovery Studio 2016 Client software to verify the binding force of Callistephus chinensis flavonoid compounds with key targets.In this study,10 potential active components were selected from the flavonoid monomer compounds of Callistephus chinensis.1847 biological processes(BP),126 cell compositions(CC)and 256 molecular functions(MF)were obtained by GO enrichment analysis;a total of 194 pathways were involved in KEGG enrichment analysis of 192 cross targets.Network analysis showed that quercetin was the main active component of flavonoids in the treatment of diabetes,AKT1,TNF,VEGFA,EGFR,SRC and other related signals were in relation to the treatment of diabetes.This study showed that Callistephus chinensis flavonoid compounds play a role in the treatment of diabetes by regulating multi-target and multi-pathway. 展开更多
关键词 Callistephus chinensis flavonoid compounds DIABETES network pharmacology molecular docking
下载PDF
Exploring the mechanism of Crocus sativus and Rosa rugosa for the treatment of coronary heart disease based on network pharmacology and molecular docking
17
作者 Aijinxiu Ma Zihan Hou +1 位作者 Ming Yang Xu Zhao 《Journal of Polyphenols》 2024年第1期20-32,共13页
Coronary atherosclerotic heart disease(CHD)is the main type of cardiovascular disease.The efficacy of Uyghur drug compound Saffron formula in CHD has been clinically proven.However,the underlying mechanism remains unc... Coronary atherosclerotic heart disease(CHD)is the main type of cardiovascular disease.The efficacy of Uyghur drug compound Saffron formula in CHD has been clinically proven.However,the underlying mechanism remains unclear.In this study,researchers investigated the active ingredients and mechanism of action of Crocus sativus and Rosa rugosa in the treatment of CHD by network pharmacology and molecular docking techniques,collected target information with the help of TCMSP,GEO,GeneCards,and other databases,constructed protein-protein interaction(PPI)network diagrams by STRING database,performed GO and KEGG pathway enrichment analysis on common targets,and finally molecularly docked the active ingredients with core targets.C.sativus-R.rugosa have a variety of polyphenol compounds,a total of 12 active ingredients,including quercetin and kaempferol,were screened.The first three targets intersected with the core targets of CHD as AKT1,TNF,and IL-1B.Enrichment results of KEGG pathway showed that C.sativus-R.rugosa against CHD involved atherosclerosis pathways.The molecular docking results showed that quercetin and kaempferol were well bound to the core targets,and it was speculated that these components might be the main active ingredients for the treatment of CHD.The potential mechanism of action of C.sativus-R.rugosa for the treatment of coronary heart disease was initially revealed. 展开更多
关键词 coronary heart disease Crocus sativus molecular docking network pharmacology POLYPHENOL Rosa rugosa
下载PDF
Mechanism of action of Balanophora involucrata polyphenolic compounds in the treatment of myocardial injury based on network pharmacology and molecular docking techniques
18
作者 Shipeng Duan Ting Gao +4 位作者 Feifei Li Xuehan Li Haojun Shen Fang Wang Xiaoshu Zhang 《Journal of Polyphenols》 2024年第2期45-55,共11页
The objective of this work was to investigate the mechanism of action of Balanophora involucrata polyphenolic compounds in the treatment of myocardial injury.In the present study,Balanophora involucrata was extracted ... The objective of this work was to investigate the mechanism of action of Balanophora involucrata polyphenolic compounds in the treatment of myocardial injury.In the present study,Balanophora involucrata was extracted by refluxing 75%of ethanol.The obtained extract was extracted with petroleum ether,ethyl acetate and n-butanol respectively.And the ethyl acetate layer was separated.The extract was prepared by silica gel column chromatography,sephadex LH-20 elution and thin layer chromatography.After that,the Swiss target prediction database was utilized to obtain the targets of Balanophora involucrata,and the Genecards,OMIM and TTD databases were used to predict and screen the targets of Balanophora involucrata for the treatment of myocardial injury.The active ingredient-target network was constructed using Cytoscape software,and the PPI network was mapped using String database and Cytoscape software.GO bioprocess enrichment analysis and KEGG pathway enrichment analysis were performed by Metascape software to predict the mechanism of action.Molecular docking was performed in Discovery Studio 2016 client software to verify the binding of Balanophora involucrata polyphenols to key targets.In this study,six polyphenolic compounds were isolated from Balanophora involucrata.By GO enrichment analysis,1614 biological processes(BP),127 cellular compositions(CC),and 215 molecular functions(MF)were obtained;a total of 155 cross-targets were involved in the KEGG enrichment analysis.The PPI network showed that quercetin was the main active component of polyphenolic compounds against myocardial injury and that AKT1,EGFR,STAT3,SRC,ESR1,MMP9,HSP90AA1 and other related signals were associated with myocardial injury treatment.Finally,the multi-component-multi-target-multi-pathway action of Balanophora involucrata was concluded,which provided new ideas and methods for further research on the mechanism of action of Balanophora involucrata in myocardial injury. 展开更多
关键词 Balanophora involucrata myocardial injury phenolic compounds network pharmacology molecular docking
下载PDF
Unraveling the therapeutic mechanisms of myristic acid and luteolin 7-rutinoside in oral cancer: insights from network pharmacology and molecular docking analysis
19
作者 Ansari Vikhar Danish Ahmad Misba Ruhi +4 位作者 Syed Ayaz Ali Qazi Yasar Mohd.Mukhtar Khan Subur W Khan Mohammed Imran Anees 《Pharmacology Discovery》 2024年第2期1-9,共9页
Background:The compound Luteolin-7-rutinoside(L7R)is a flavone derivative of luteolin,predominantly identified in plant species belonging to the families Asteraceae.Conversely,Myristic acid is characterized by its str... Background:The compound Luteolin-7-rutinoside(L7R)is a flavone derivative of luteolin,predominantly identified in plant species belonging to the families Asteraceae.Conversely,Myristic acid is characterized by its structure as a 14-carbon,unsaturated fatty acid.In this investigation,we endeavor to elucidate the putative mechanisms underlying the therapeutic effects of Myristic Acid and Luteolin 7-rutinoside in the context of oral cancer treatment,employing network pharmacology coupled with molecular docking methodologies.Methods:The protein targets of Myristic Acid and Luteolin 7-rutinoside were identified through a search on the Swiss Target Database.Subsequently,a compound-target network was constructed using Cytoscape 3.9.1.Targets associated with OC were retrieved from the OMIM and GeneCards databases.The overlap between compound targets and OC-related targets was determined,and the resulting shared targets were subjected to protein-protein interaction(PPI)network analysis using the STRING database.Additionally,gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were conducted on the identified targets.Molecular docking were performed to investigate the interactions between the core target and the active compound.Results:The component target network comprises 103 nodes and 102 edges.Among the proteins in the protein-protein interaction(PPI)network,those with higher degrees are TNF,PPARG,and TP53.Analysis through Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways indicates that the treatment of OC with Myristic Acid and Luteolin 7-rutinoside primarily involves the regulation of miRNA transcription and inflammatory response.The identified signaling pathways include Pathways in cancer,PPAR signaling pathway,EGFR signaling pathway,and TNF signaling pathway.Molecular docking studies reveal that Luteolin 7-rutinoside and Myristic acid exhibit higher affinity towards TNF,PPARG,TP53,and EGFR.Conclusion:This study reveals the potential molecular mechanism of Myristic Acid and Luteolin 7-rutinoside in the treatment of oral cancer,and provides a reference for subsequent basic research. 展开更多
关键词 myristic acid luteolin 7-rutinoside network pharmacology oral cancer molecular docking
下载PDF
Exploring the bioactive compounds of Feiduqing formula for the prevention and management of COVID-19 through network pharmacology and molecular docking
20
作者 Shuang-Lin Qin Hui Yao +5 位作者 Ting Huang Hong-Fei Yang Ting-Ting Ge Jie-Qiong Wang Wei-Wu Wang Qing Min 《Medical Data Mining》 2024年第1期16-23,共8页
Background:To explore the effective chemical constituents of Feiduqing formula for prevention and treatment of coronavirus disease 2019(COVID-19).Methods:The compounds and action targets of twelve herbal medicines in ... Background:To explore the effective chemical constituents of Feiduqing formula for prevention and treatment of coronavirus disease 2019(COVID-19).Methods:The compounds and action targets of twelve herbal medicines in Feiduqing formula were collected via Traditional Chinese Medicine Systems Pharmacology Database and Analytic Platform.The genes corresponding to the targets were queried through the UniProt database.The“herbal medicine-ingredient-target”network was established by Cytoscape software.The Gene Ontology function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed by Database for Annotation,Visualization and Integrated Discovery.Molecular docking was used to analyze the binding force of core active compounds of Feiduqing formula with PTGS2,HSP90AA1,SARS-CoV-23CL hydrolase and angiotensin converting enzyme II(ACE2).Results:The“herbal medicine-ingredient-target”network included 434 nodes and 1948 edges,including 222 components such as quercetin,kaempferol,luteolin,etc.The key targets are PTGS2,HSP90AA1,PTGS1,ESR1,AR,NOS2,etc.Gene Ontology function enrichment analysis revealed 2530 items,including RNA polymerase II-specific,response to oxidative stress,transcription factor activity,etc.Kyoto Encyclopedia of Genes and Genomes pathway enrichment screened 169 signal pathways,including Human cytomegalovirus infection,Kaposi sarcoma-associated herpesvirus infection,Hepatitis B,Hepatitis C,IL-17,TNF,etc.The results of molecular docking showed that quercetin,luteolin,β-sitosterol,stigmasterol and other core active compounds have a certain degree of affinity with PTGS2,HSP90AA1,SARS-CoV-23CL hydrolase and ACE2.Conclusion:The active compounds of Feiduqing formula may have a therapeutic effect on COVID-19 pneumonia through the action on PTGS2,HSP90AA1,SARS-CoV-23CL hydrolase and ACE2,and regulating many signaling pathways. 展开更多
关键词 Feiduqing formula COVID-19 network pharmacology molecular docking SARS-CoV-23CL hydrolase
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部