The concept of legged-robot stability training with a training platform is proposed and a serial-parallel mechanism platform with 6 degrees of freedom is designed for this target. The designed platform is composed of ...The concept of legged-robot stability training with a training platform is proposed and a serial-parallel mechanism platform with 6 degrees of freedom is designed for this target. The designed platform is composed of 4-DOF parallel mechanism with spherical joints and prismatic pairs,and 2-DOF serial mechanism with prismatic pairs. With this design,the platform has advantages of low platform countertop,big workspace,high carrying capacity and high stiffness. On the basis of DOF analysis and computation of space mechanism,weight supporting auxiliary mechanism and raceways-balls supporting mechanism are designed,so as to improve the stiffness of designed large platform and payload capacity of servo motors. And then the whole structure design work of the platform is done. Meanwhile,this paper derives the analytical solutions of forward kinematics, inverse kinematics and inverse dynamics. The error analysis model of position and orientation is established. And then the simulation is done in ADAMS to ensure the correctness and feasibility of this design.展开更多
基金Sponsored by the National High-Tech Research and Development Program(Grant No.2006AA04Z201)
文摘The concept of legged-robot stability training with a training platform is proposed and a serial-parallel mechanism platform with 6 degrees of freedom is designed for this target. The designed platform is composed of 4-DOF parallel mechanism with spherical joints and prismatic pairs,and 2-DOF serial mechanism with prismatic pairs. With this design,the platform has advantages of low platform countertop,big workspace,high carrying capacity and high stiffness. On the basis of DOF analysis and computation of space mechanism,weight supporting auxiliary mechanism and raceways-balls supporting mechanism are designed,so as to improve the stiffness of designed large platform and payload capacity of servo motors. And then the whole structure design work of the platform is done. Meanwhile,this paper derives the analytical solutions of forward kinematics, inverse kinematics and inverse dynamics. The error analysis model of position and orientation is established. And then the simulation is done in ADAMS to ensure the correctness and feasibility of this design.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60534020)国家教育部新世纪人才支持计划(the New Century Excellent Talent Foundation from MOE of China under Grant No.NCET-04-415)+1 种基金教育部科技创新工程重大项目培育资金项目( No.706024)上海市国际科技合作基金项目( No.061307041)