Two acceptor-donor-acceptor(A-D-A)type non-fullerene acceptors(namely WH1 and WH7)containing the oxindole-based bridge are designed and synthesized for polymer solar cells(PSCs)applications.The bridge unit is introduc...Two acceptor-donor-acceptor(A-D-A)type non-fullerene acceptors(namely WH1 and WH7)containing the oxindole-based bridge are designed and synthesized for polymer solar cells(PSCs)applications.The bridge unit is introduced through a precursor(6-bromo-1-octylindoline-2,3-dione)that contains both bromine and carbonyl and provides the feasibility of the Pd-catalyzed cross-coupling reaction and the Knoevenagel condensation,respectively.This facile synthetic approach exhibits the potential to gain high performance non-fullerene acceptors through extendingπ-conjugated backbone with strong light-absorbing building blocks.The synthesis and properties of WH1 and WH7 are demonstrated with different endcap units,then PSCs are fabricated using PBDB-T:WH1 and PBDB-T:WH7 as the active layers,and attain an average power conversion efficiency(PCE)of 2.58%and 6.24%,respectively.Further device physics studies afford the deep insight of structure variation influence on the device performance.This work provides a facile non-fullerene acceptor design strategy and shows how structure variations impact the PSC performance.展开更多
Based on graphene, a new class of second-order nonlinear optical(NLO) material, the lithium salt of NH2-substituted graphene nanoribbon with the twofold donor(D)/acceptor(A) mode, was reported. Eight stable 2Li-...Based on graphene, a new class of second-order nonlinear optical(NLO) material, the lithium salt of NH2-substituted graphene nanoribbon with the twofold donor(D)/acceptor(A) mode, was reported. Eight stable 2Li-2NH2-GNR lithium salts, especially cis lithium salts, display considerably large β0 values. The combination of NH2-substituting and cis Li-doping makes β0 greatly increased from 0(GNR) to 1.2×105―2.9×105 a.u.(cis-2Li- 2NH2-GNRs). Our largest β0 value(2.9×105 a.u.) for cis-2Li-1,3-2NH2-AGNR is comparable to the record value of 1.7×105 a.u. for a long donor-acceptor polyene.展开更多
The ground and excited state properties of the [60]fullerene, diphenylbenzothiadiazole-triphenylamine (PBTDP-TPA) dyad and fullerene-diphenylbenzothiadiazole-triphenylamine (fullerene-PBTDP-TPA) triad were investi...The ground and excited state properties of the [60]fullerene, diphenylbenzothiadiazole-triphenylamine (PBTDP-TPA) dyad and fullerene-diphenylbenzothiadiazole-triphenylamine (fullerene-PBTDP-TPA) triad were investigated theoretically using density functional theory with B3LYP functional and 3-21G basis set and time-dependent density functional theory with B3LYP functional and STO-3G basis set as well as 2D and 3D real space analysis methods. The 2D site representation reveals the electron-hole coherence on excitation. The 3D transition density shows the orientation and strength of the transition dipole moment, and the 3D charge difference density gives the orientation and result of the intramolecular charge transfer. Also photoinduced intermolecular charge transfer (ICT) in PBTDP-TPA-fullerene triad are identified with 2D and 3D representations, which reveals the mechanisms of ICT in donor-bridge-acceptor triad on excitation. Besides that we also found that the direct superexchange ICT from donor to acceptor (tunneling through the bridge) strongly promotes the ICT in the donor-bridge-acceptor triad.展开更多
The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhe...The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl))(PTB7-Th).The PTB7-Th is doped by Fe Cl;and only polarons are induced in its doped films.The results reveal that the electron-rich donor units within PTB7-Th lose electrons preferentially at the initial stage of the oxidation and then the acceptor units begin to be oxidized at a high doping concentration.The energy levels of polarons and the Fermi level of the doped PTB7-Th remain almost unchange with different doping levels.However,the morphology of the PTB7-Th films could be deteriorated as the doping levels are improved,which is one of the main reasons for the decrease of electrical conductivity at the later stage of doping.The best electrical conductivity and power factor are obtained to be 42.3 S·cm^(-1);and 33.9μW·mK^(-1),respectively,in the doped PTB7-Th film at room temperature.The power factor is further improved to 38.3μW·mK^(-1);at 75℃.This work may provide meaningful experience for development of D-A type thermoelectric copolymers and may further improve the doping efficiency.展开更多
Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing....Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing. Herein, we design and synthesize a series of donor-acceptor(D-A) type SAMs(MPA-BTCA, MPA-BT-BA, and MPA-BT-RA, where MPA is 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline;BT is benzo[c][1,2,5]-thiadiazole;CA is 2-cyanoacrylic acid, BA is benzoic acid, RA is rhodanine-3-propionic acid) with distinct anchoring groups, which show dramatically different properties. MPA-BTCA with CA anchoring groups exhibited stronger dipole moments and formed a homogeneous monolayer on the indium tin oxide(ITO) surface by adopting an upstanding self-assembling mode. However, the MPA-BT-RA molecules tend to aggregate severely in solid state due to the sp~3 hybridization of the carbon atom on the RA group, which is not favorable for achieving a long-range ordered self-assembled layer.Consequently, benefiting from high dipole moment, as well as dense and uniform self-assembled film,the device based on MPA-BT-CA yielded a remarkable power conversion efficiency(PCE) of 21.81%.Encouragingly, an impressive PCE approaching 20% can still be obtained for the MPA-BT-CA-based PSCs as the device area is increased to 0.80 cm^(2). Our work sheds light on the design principles for developing hole selecting SAMs, which will pave a way for realizing highly efficient, flexible, and large-area PSCs.展开更多
Novel donor-acceptor-donor structured small molecular hole transporting materials are developed through a facile route by crosslinking dithienopyrrolobenzothiadiazole and phenothiazine or triarylamine-based donor unit...Novel donor-acceptor-donor structured small molecular hole transporting materials are developed through a facile route by crosslinking dithienopyrrolobenzothiadiazole and phenothiazine or triarylamine-based donor units. The strong push/pull electron capability of dithienopyrrolobenzothiadiazole/ phenothiazine and large π-conjugated dithienopyrrolobenzothiadiazole facilitate hole mobility and high conductivity. The devices using the dithienopyrrolobenzothiadiazole/phenothiazine-based hole trans-porting material achieved a power conversion efficiency of 14.2% under 1 sun illumination and improved stability under 20% relative humidity at room temperature without encapsulation. The present finding highlights the potential of dithienopyrrolobenzothiadiazole-based donor-acceptor-donor small molecular hole transporting materials for perovskite solar cells.展开更多
Reduced rate constants of photoinduced electron transfer in intramolecular fluorescence quenching of donor-acceptor podands induced by cation-complexation are observed in the highly exothermic reactions.
Modulating reversible isomerization of hydrophobic dyes in aqueous solutions is greatly desired. Here we report on reversible isomerization of solvatochromic donor-acceptor Stenhouse adducts(DASAs) in water through th...Modulating reversible isomerization of hydrophobic dyes in aqueous solutions is greatly desired. Here we report on reversible isomerization of solvatochromic donor-acceptor Stenhouse adducts(DASAs) in water through the confinement from dendritic oligoethylene glycols(OEGs). Dendronization of DASAs with dendritic OEGs affords them characteristic thermoresponsiveness. These dendronized DASAs spontaneously isomerize in water from hydrophobic linear state into hydrophilic cyclic state at room temperature due to the strong hydration. However, hydrophobic microenvironment through thermally dehydration and collapse of the dendritic OEGs at elevated temperatures confines hydration of the DASA moieties and mediates their interactions with the collapsed hydrophobic OEG domains, affording their isomerization recovery in water efficiently from the hydrophilic cyclic state into the hydrophobic linear state. The confinement-mediated reversible isomerization of DASA moieties in water can be repeated through alternative photo-irradiation and thermal dehydrations, exhibiting excellent fatigue resistance.展开更多
A new catalytic decarboxylative cyanation and thiocyanation via a synergistic Na I/Cu catalysis is developed.The photoexcited electron donor-acceptor complex by assembly of Na I,R3P,and N-acyloxy-phthalimide ester(NHP...A new catalytic decarboxylative cyanation and thiocyanation via a synergistic Na I/Cu catalysis is developed.The photoexcited electron donor-acceptor complex by assembly of Na I,R3P,and N-acyloxy-phthalimide ester(NHPI ester)triggers the generation of alkyl radical species,which then engages in Cu-catalyzed radical coupling process.Key to success of this dual catalytic transformation is the reliable charge transfer between I·and Cu(I).This dual catalytic platform can eliminate the use of expensive iridium-based photocatalyst or synthetically elaborate organic dyes.A series of primary,secondary,and tertiary alkyl nitriles and thiocyanates are easily synthesized.Moreover,an asymmetric decarboxylative cyanation by applying a chiral Cu catalyst is also developed to afford chiral nitriles in high enantioselectivity.The mechanistic details and the origin of the high enantioselectivity are further investigated by the mechanistic experiments and the density functional theory calculations.展开更多
The combination of donor-acceptor(D-A)structures presents a viable strategy for fabricating covalent organic frameworks(COFs)with exceptional photocatalytic performances.Nevertheless,the selection of functional groups...The combination of donor-acceptor(D-A)structures presents a viable strategy for fabricating covalent organic frameworks(COFs)with exceptional photocatalytic performances.Nevertheless,the selection of functional groups on donor or acceptor building blocks and their effect on the macroscopic properties of COFs are ambiguous.In this study,we tactfully synthesized a pair of Py-DBT-COFs from the same pyrene(Py)donor and 4,7-diphenylbenzo[c][1,2,5]thiadiazole(DBT)acceptor cores with distinct primitive functional groups.The primitive functional groups of building units determine the photocatalytic properties of corresponding Py-DBT-COFs.Specifically,Py-C-DBT-COF synthesized from Py-4CHO and DBT-2NH_(2)showcases a splendid H_(2)evolution rate as high as 21,377.7μmol/(g·h)(with 5 wt.%Pt)originating from better charge transfer capacity,which is significantly superior to that of Py-N-DBT-COF constructed from Py-4NH_(2)and DBT-2CHO.The distinct photocatalytic performances of the two COFs are demonstrated to originate from the different charge separation and transfer capabilities.This work supplies a new avenue for optimizing the photocatalytic performance of D-A COFs from the perspective of primitive functional group selections.展开更多
Photocatalytic hydrogen generation from hydrogen storage media is an effective and promising approach for the green hydrogen industry as well as for achieving carbon neutrality goals.However,the lower photocatalytic e...Photocatalytic hydrogen generation from hydrogen storage media is an effective and promising approach for the green hydrogen industry as well as for achieving carbon neutrality goals.However,the lower photocatalytic efficiency due to the limited light trapping capacity,low electron transfer rate,and severe aggregation of nanoparticles caused by high surface energy seriously restricts their practical application.Herein,we constructed a series of donor–acceptor(D–A)type covalent organic frameworks to confine ultrafine bimetallic Pt-based nanoclusters for photocatalytic hydrogen generation from ammonia borane(AB)hydrolysis.Under visible light irradiation at 20℃,PtCo_(2)@covalent organic framework(COF)showed the highest photocatalytic activity with a turnover frequency(TOF)of 486 min−1.Experiments and density functional theory(DFT)calculations reveal that the high catalytic activity is mainly attributed to the strong electronic interactions between D–A type COF and ultrafine PtCo_(2)nanoclusters.Specifically,the D–A type COF can significantly enhance the light-trapping ability by fine-tuning the electron-acceptor type in the framework,and accelerate the photogenerated electron transfer from D–A type COF to PtCo_(2)nanocluster,which promotes the adsorption and activation of H_(2)O and AB molecules and accelerates hydrogen release.Furthermore,PtCo_(2)@COF also exhibited ultra-high durability due to the significantly enhanced resistance to nanocluster aggregation caused by the nanopore confinement effect of D–A type COF.We believe that this work will provide a theoretical guide for the rational design of efficient D–A COFbased catalysts for photocatalysis.展开更多
Donor-Acceptor(D-A)alignment is considered a productive strategy to improve the charge separation efficiency of covalent organic frameworks(COFs)and enhance the charge-transfer yield(CTY)of COFs.Moreover,organic molec...Donor-Acceptor(D-A)alignment is considered a productive strategy to improve the charge separation efficiency of covalent organic frameworks(COFs)and enhance the charge-transfer yield(CTY)of COFs.Moreover,organic molecules containing heteroatoms can produce coordination interaction with PbI2 of perovskite precursor to affect the crystallization process,thereby impeding the decomposition and improving the stability of perovskite materials.Herein,a thiazolo[5,4-d]thiazole(TZ)-based D-A type COF_(TPDA-TZDA) was designed and synthesized from N,N,N′,N′-tetrakis(4-aminophenyl)-1,4-benzenediamine(TPDA)and 4,4′-(thiazolo[5,4-d]thiazole-2,5-diyl)dibenzaldehyde(TZDA).Upon incorporation into the FAPbI3 layer,COF_(TPDA-TZDA) not only restrained the perovskite defects and enhanced the grain size of perovskite films through the coordination effect of the N atoms of TZDA but also ameliorated the charge transport within the perovskite film,which was the benefit of the D-A structure of COF_(TPDA-TZDA).As a result,incorporation of COF_(TPDA-TZDA) into the perovskite solar cells(PSCs)led to a remarkable power conversion efficiency(PCE)of up to 23.51%.Furthermore,even after being stored in high relative humidity(RH≈60%)for 480 h,these PSCs maintained over 90.55%of their original PCE.This work sets the foundation for the development of highly efficient and stable PSCs by utilizing TZ-based D-A type COFs.展开更多
Conjugated microporous polymers (CMPs) featuring extended π-structures, large specific surface area and tailor-made functionalities are a class of promising organic photocatalysts for hydrogen evolution reaction (HER...Conjugated microporous polymers (CMPs) featuring extended π-structures, large specific surface area and tailor-made functionalities are a class of promising organic photocatalysts for hydrogen evolution reaction (HER) from water. However, the photocatalytic activities of most CMPs are severely hindered by slow charge transfer rate and fast charge recombination process. Herein, we develop a strategy for the synthesis of donor-acceptor CMPs through nickel(0)-catalyzed Yamamoto cross-coupling of 3,6-dibromo-9-(4-bromophenyl)carbazole (CZ) with 5,5'-dibromo-2,2'-bipyridine (DBPy) for efficient HER from water. The PCZN-4 prepared with a 2 : 3 stoichiometric ratio of CZ to DBPy exhibited the highest photocatalytic hydrogen evolution rate of 7160 μmol·g^(–1)·h^(–1), which was nearly equal to 179 times and 143 times that of PCZN-1 (40 μmol·g^(–1)·h^(–1)) and PCZN-6 (50 μmol·g^(–1)·h^(–1)) obtained by Yamamoto homocoupling of CZ and DBPy, respectively. Compared to the homocoupling counterparts, the enhanced photocatalytic activity of PCZN-4 results from improved separation efficiency of charge carriers. Interestingly, the photocatalytic H2 evolution performance of PCZN-4 could be further improved up to 17080 μmol·g^(–1)·h^(–1) by adjusting pH of the aqueous solution. This work offers a novel approach for improving photocatalytic efficiency by tuning the chemical structures and surrounding microenvironment of the polymer backbone.展开更多
The visible light-driven C2 or C3 amination of indoles without any additives was initiated via electron donor-acceptor (EDA) complex formed by indole and N-aminopyridinium salt.This method was compatible with a wide r...The visible light-driven C2 or C3 amination of indoles without any additives was initiated via electron donor-acceptor (EDA) complex formed by indole and N-aminopyridinium salt.This method was compatible with a wide range of substrates and could proceed smoothly without the addition of any photocatalysts,transition-metal catalysts,or bases.A variety of studies were carried out to examine the presence of EDA complex.展开更多
The design and synthesis of photoactive macrocyclic molecules continue to attract attention because such species play important roles in supramolecular chemistry as well as photoelectronic applications.Donoracceptor(D...The design and synthesis of photoactive macrocyclic molecules continue to attract attention because such species play important roles in supramolecular chemistry as well as photoelectronic applications.Donoracceptor(D-A)conjugated macrocycles are an emerging class of photoactive molecules due to their D-A conjugated structural characteristics and tunable optical properties.In addition,the well-defined cavities in such D-A macrocycles endow them with versatile host-guest properties.In this review,we provide a comprehensive summary of D-A conjugated macrocycle chemistry,detailing recent progress in the area of synthetic methods,optical properties,host-guest chemistry and applications of the underlying chemistry to chemical sensors,bioimaging and photoelectronic devices.Our objective is to provide not only a review of the fundamental findings,but also to outline future research directions where D-A conjugated macrocycles and their constructs may have a role to play.展开更多
Controlling properties of crystalline solids by light remains a challenge because the lack of intrinsic structural flexibility limits the necessary molecular mobility for photoisomerization. In this work, we reported ...Controlling properties of crystalline solids by light remains a challenge because the lack of intrinsic structural flexibility limits the necessary molecular mobility for photoisomerization. In this work, we reported a series of visible-light-responsive covalent organic frameworks (COFs) by introducing donor-acceptor Stenhouse adducts (DASAs) with various electron-withdrawing moieties via a post-modified strategy. The DASAs-functionalized COFs exhibit distorted honeycomb layered topology with long-range periodicity. The DASAs grafted on the skeletons are pointing into the nanopores of COFs, which weakens intermolecular aggregation and ensures sufficient free volume to undergo reversible isomerization between linear and cyclic states. Furthermore, the crystalline and optical properties of COFs as well as the geometrical size and hydrophilicity inside the nanopores were reversibly controlled by alternating visible light irradiation and heat. Finally, methyl violet was used as the cargo molecules to be immobilized into the nanopores of COFs, which showed fast release under controlling of visible light.展开更多
The recent progress in the design and synthesis of high-performance donor-acceptor conjugated polymeric semiconducting materials is reviewed from the perspective of multiscale structures.The multiscale of conjugated p...The recent progress in the design and synthesis of high-performance donor-acceptor conjugated polymeric semiconducting materials is reviewed from the perspective of multiscale structures.The multiscale of conjugated polymers is from the primary one-dimensional polymer molecular scale to the secondary polymer-chains interaction scale,and then to the tertiary polymer aggregate scale.This review focuses on the design and synthesis of polymer molecules,proposes new classification rules,and rationally summarizes the design strategies and modulation methods of polymers.We describe the recent progress from these three aspects:(1)the modification ofπ-conjugated backbone,(2)the evolution of the polymerization methods,and(3)the regulation of aggregate-state structure.展开更多
Comprehensive Summary Conjugated fused-ring structures have attracted extensive attention due to their high molecular rigidity to restrain excited-state relaxation and non-radiative decay,and further to enhance the lu...Comprehensive Summary Conjugated fused-ring structures have attracted extensive attention due to their high molecular rigidity to restrain excited-state relaxation and non-radiative decay,and further to enhance the luminance efficiency for emissive materials.Herein,we develop a series of donor-acceptor type thermally activated delayed fluorescence(TADF)emitters by introducing fused-ring 5H-benzofuro[3,2-c]carbazole(32BFCz)as electron donating unit.Through optimizing the numbers and structure of donor and acceptor moieties,three compounds named 32BFCzA,mCF3BFCzOXD and dCF3BFCzOXD are designed,which are composed by mono-32BFCz/trifluoromethylpicolinonitrile,penta-BFCz/3-(trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)benzene and penta-32BFCz/3,5-bis(trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)benzene as donor/acceptor groups,respectively.展开更多
Chemical glycosylation methodologies for the preparation of the bioactive oligosaccharides and glycoconjugates promise reliable access to these compounds as homogeneous materials with welldefined structures in suffici...Chemical glycosylation methodologies for the preparation of the bioactive oligosaccharides and glycoconjugates promise reliable access to these compounds as homogeneous materials with welldefined structures in sufficient amounts.Here we report a novel activation method of thio(seleno)glycosides employing donor-acceptor cyclopropane(DAC)agents and Sc(OTf)_(3).The Lewis acid catalyst converts DAC into a formal 1,3-zwitterionic species that in turn activates thioglycosides to furnish a glycosyl 1,4-zwitterionic intermediate,interconverting with reactive glycosyl oxocarbenium in the solution with reversible leaving-group dissociation.This activation method effectively promotes glycosylation reactions between both armed and disarmed thioglycosides and structurally diverse acceptors,affording oligosaccharides with satisfactory yields.The usefulness of our activation method has been demonstrated by the mechanism-inspired 2,4-dinitrobenzenesulfonyl(DNs)group directed S_(N)2-like glycosylation and the facile preparation of both linear and branched trisaccharides in one pot via controlled sequential activation of thioglycoside donors.展开更多
Imbalanced charge-carrier extraction remains an issue aggravating interfacial charge accumulation and recombination.More hopping transport channels could accelerate the extraction of charge.Here,we demonstrated an eff...Imbalanced charge-carrier extraction remains an issue aggravating interfacial charge accumulation and recombination.More hopping transport channels could accelerate the extraction of charge.Here,we demonstrated an effective“bridging interface”strategy between the perovskite/2,2′,7,7′-tetrakis(N,N-di-pmethoxyphenylamine)-9,9′-spirobifluorene(spiro-OMeTAD)that modulates interfacial charge transfer and improves hole mobility using radical-containing donor-acceptor nanographenes(D-A NGs)possessing electron-deficient perchlorinated NGs and electron-rich aniline derivatives.The fully delocalized backbone of nanographene formed a conjugated bridge for intermolecular charge transfer and generated stable radical cations,verified by electron spin resonance.Lamellar andπ-πstacking orientation of D-A NGs also provided advantageous hopping transport channels.Besides favorable charge transfer within D-A NGs,systematic explorations indicated a strong interface coupling and noticeable charge transfer across the D-A NGs and perovskite interface,where electrons would flow from D-A NGs to perovskite,and holes would flow from perovskite to D-A NGs.Moreover,the hole mobility of spiro-OMeTAD was also enhanced because the D-A NGs would diffuse into the spiro-OMeTAD layer.As a result,planar n-i-p perovskite solar cellsmodified byD-ANG-OMe/D-ANG-tBudeliveredchampion power conversion efficiencies(PCEs)of 23.25%and 23.51%,respectively.展开更多
基金National Natural Science Foundation of China(No.21805032)Natural Science Foundation of Shanghai,China(No.19ZR1401400)Fundamental Research Funds for the Central Universities,China(No.20D128502).
文摘Two acceptor-donor-acceptor(A-D-A)type non-fullerene acceptors(namely WH1 and WH7)containing the oxindole-based bridge are designed and synthesized for polymer solar cells(PSCs)applications.The bridge unit is introduced through a precursor(6-bromo-1-octylindoline-2,3-dione)that contains both bromine and carbonyl and provides the feasibility of the Pd-catalyzed cross-coupling reaction and the Knoevenagel condensation,respectively.This facile synthetic approach exhibits the potential to gain high performance non-fullerene acceptors through extendingπ-conjugated backbone with strong light-absorbing building blocks.The synthesis and properties of WH1 and WH7 are demonstrated with different endcap units,then PSCs are fabricated using PBDB-T:WH1 and PBDB-T:WH7 as the active layers,and attain an average power conversion efficiency(PCE)of 2.58%and 6.24%,respectively.Further device physics studies afford the deep insight of structure variation influence on the device performance.This work provides a facile non-fullerene acceptor design strategy and shows how structure variations impact the PSC performance.
基金Supported by the National Natural Science Foundation of China(Nos.20773046, 20773048 and 21073075)
文摘Based on graphene, a new class of second-order nonlinear optical(NLO) material, the lithium salt of NH2-substituted graphene nanoribbon with the twofold donor(D)/acceptor(A) mode, was reported. Eight stable 2Li-2NH2-GNR lithium salts, especially cis lithium salts, display considerably large β0 values. The combination of NH2-substituting and cis Li-doping makes β0 greatly increased from 0(GNR) to 1.2×105―2.9×105 a.u.(cis-2Li- 2NH2-GNRs). Our largest β0 value(2.9×105 a.u.) for cis-2Li-1,3-2NH2-AGNR is comparable to the record value of 1.7×105 a.u. for a long donor-acceptor polyene.
基金This work was supported by the National Natural Science Foundation of China (No.10374040, No.20703064, and No.10505001) and the Postdoctoral Science Foundation of China (No.20060390017).
文摘The ground and excited state properties of the [60]fullerene, diphenylbenzothiadiazole-triphenylamine (PBTDP-TPA) dyad and fullerene-diphenylbenzothiadiazole-triphenylamine (fullerene-PBTDP-TPA) triad were investigated theoretically using density functional theory with B3LYP functional and 3-21G basis set and time-dependent density functional theory with B3LYP functional and STO-3G basis set as well as 2D and 3D real space analysis methods. The 2D site representation reveals the electron-hole coherence on excitation. The 3D transition density shows the orientation and strength of the transition dipole moment, and the 3D charge difference density gives the orientation and result of the intramolecular charge transfer. Also photoinduced intermolecular charge transfer (ICT) in PBTDP-TPA-fullerene triad are identified with 2D and 3D representations, which reveals the mechanisms of ICT in donor-bridge-acceptor triad on excitation. Besides that we also found that the direct superexchange ICT from donor to acceptor (tunneling through the bridge) strongly promotes the ICT in the donor-bridge-acceptor triad.
基金supported by the National Key Research and Development Program of China(Grant No.Q2019YFE0107200)。
文摘The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl))(PTB7-Th).The PTB7-Th is doped by Fe Cl;and only polarons are induced in its doped films.The results reveal that the electron-rich donor units within PTB7-Th lose electrons preferentially at the initial stage of the oxidation and then the acceptor units begin to be oxidized at a high doping concentration.The energy levels of polarons and the Fermi level of the doped PTB7-Th remain almost unchange with different doping levels.However,the morphology of the PTB7-Th films could be deteriorated as the doping levels are improved,which is one of the main reasons for the decrease of electrical conductivity at the later stage of doping.The best electrical conductivity and power factor are obtained to be 42.3 S·cm^(-1);and 33.9μW·mK^(-1),respectively,in the doped PTB7-Th film at room temperature.The power factor is further improved to 38.3μW·mK^(-1);at 75℃.This work may provide meaningful experience for development of D-A type thermoelectric copolymers and may further improve the doping efficiency.
基金financial support from the National Natural Science Foundation of China (NSFC)(21805128)the National Natural Science Foundation of China (21774055)+3 种基金the financial support from the National Natural Science Foundation of China(21975260)the Shenzhen Science and Technology Innovation Commission(JCYJ20180504165709042)financial support of Guangdong Provincial Key Laboratory Program(2021B1212040001) from the Department of Science and Technology of Guangdong Provincethe NSFC-CNR exchange program of NSFC(22011530391)。
文摘Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing. Herein, we design and synthesize a series of donor-acceptor(D-A) type SAMs(MPA-BTCA, MPA-BT-BA, and MPA-BT-RA, where MPA is 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline;BT is benzo[c][1,2,5]-thiadiazole;CA is 2-cyanoacrylic acid, BA is benzoic acid, RA is rhodanine-3-propionic acid) with distinct anchoring groups, which show dramatically different properties. MPA-BTCA with CA anchoring groups exhibited stronger dipole moments and formed a homogeneous monolayer on the indium tin oxide(ITO) surface by adopting an upstanding self-assembling mode. However, the MPA-BT-RA molecules tend to aggregate severely in solid state due to the sp~3 hybridization of the carbon atom on the RA group, which is not favorable for achieving a long-range ordered self-assembled layer.Consequently, benefiting from high dipole moment, as well as dense and uniform self-assembled film,the device based on MPA-BT-CA yielded a remarkable power conversion efficiency(PCE) of 21.81%.Encouragingly, an impressive PCE approaching 20% can still be obtained for the MPA-BT-CA-based PSCs as the device area is increased to 0.80 cm^(2). Our work sheds light on the design principles for developing hole selecting SAMs, which will pave a way for realizing highly efficient, flexible, and large-area PSCs.
基金Financial support from the 973 Program of China(No.2014CB643506)the NSFC Major International(Regional)Joint Research Project NSFC-SNSF(51661135023)+2 种基金NSFC(21673091,21702147)the Fundamental Research Funds For the Central Universities HUST(2018KFYXKJC034)the Opening Project of Zhejiang Provincial Top Key Discipline of Pharmaceutical Sciences
文摘Novel donor-acceptor-donor structured small molecular hole transporting materials are developed through a facile route by crosslinking dithienopyrrolobenzothiadiazole and phenothiazine or triarylamine-based donor units. The strong push/pull electron capability of dithienopyrrolobenzothiadiazole/ phenothiazine and large π-conjugated dithienopyrrolobenzothiadiazole facilitate hole mobility and high conductivity. The devices using the dithienopyrrolobenzothiadiazole/phenothiazine-based hole trans-porting material achieved a power conversion efficiency of 14.2% under 1 sun illumination and improved stability under 20% relative humidity at room temperature without encapsulation. The present finding highlights the potential of dithienopyrrolobenzothiadiazole-based donor-acceptor-donor small molecular hole transporting materials for perovskite solar cells.
基金We are grateful to the National NatUral Science Foundation of China for support this work.!(grantNO. 29733100)
文摘Reduced rate constants of photoinduced electron transfer in intramolecular fluorescence quenching of donor-acceptor podands induced by cation-complexation are observed in the highly exothermic reactions.
基金supported by the National Natural Science Foundation of China (21971160, 21971161, 22271183 and 22371179)the Program for Professor of Special Appointment (Eastern Scholar TP2019039) at Shanghai Institutions of Higher Learning。
文摘Modulating reversible isomerization of hydrophobic dyes in aqueous solutions is greatly desired. Here we report on reversible isomerization of solvatochromic donor-acceptor Stenhouse adducts(DASAs) in water through the confinement from dendritic oligoethylene glycols(OEGs). Dendronization of DASAs with dendritic OEGs affords them characteristic thermoresponsiveness. These dendronized DASAs spontaneously isomerize in water from hydrophobic linear state into hydrophilic cyclic state at room temperature due to the strong hydration. However, hydrophobic microenvironment through thermally dehydration and collapse of the dendritic OEGs at elevated temperatures confines hydration of the DASA moieties and mediates their interactions with the collapsed hydrophobic OEG domains, affording their isomerization recovery in water efficiently from the hydrophilic cyclic state into the hydrophobic linear state. The confinement-mediated reversible isomerization of DASA moieties in water can be repeated through alternative photo-irradiation and thermal dehydrations, exhibiting excellent fatigue resistance.
基金supported by the National Natural Science Foundation of China(22201087)the National Key R&D Program of China(2022YFA1503200)Guangdong Basic and Applied Basic Research Foundation(2022A1515012507)。
文摘A new catalytic decarboxylative cyanation and thiocyanation via a synergistic Na I/Cu catalysis is developed.The photoexcited electron donor-acceptor complex by assembly of Na I,R3P,and N-acyloxy-phthalimide ester(NHPI ester)triggers the generation of alkyl radical species,which then engages in Cu-catalyzed radical coupling process.Key to success of this dual catalytic transformation is the reliable charge transfer between I·and Cu(I).This dual catalytic platform can eliminate the use of expensive iridium-based photocatalyst or synthetically elaborate organic dyes.A series of primary,secondary,and tertiary alkyl nitriles and thiocyanates are easily synthesized.Moreover,an asymmetric decarboxylative cyanation by applying a chiral Cu catalyst is also developed to afford chiral nitriles in high enantioselectivity.The mechanistic details and the origin of the high enantioselectivity are further investigated by the mechanistic experiments and the density functional theory calculations.
基金the National Natural Science Foundation of China(Nos.22201063 and U21A2085)Science and Technology Research and Development Plan Joint Fund of Henan Province(No.225200810083)+3 种基金Science and Technology Research and Development Program of Henan Province(No.232102230083)High-level talents international training project of Henan Province(K2306Y)Project of Scientific and Technological Innovation Team in University of Henan Province,China(No.20IRTSTHN001)the Zhongyuan High-Level Talents Special Support Plan of China(No.204200510009).
文摘The combination of donor-acceptor(D-A)structures presents a viable strategy for fabricating covalent organic frameworks(COFs)with exceptional photocatalytic performances.Nevertheless,the selection of functional groups on donor or acceptor building blocks and their effect on the macroscopic properties of COFs are ambiguous.In this study,we tactfully synthesized a pair of Py-DBT-COFs from the same pyrene(Py)donor and 4,7-diphenylbenzo[c][1,2,5]thiadiazole(DBT)acceptor cores with distinct primitive functional groups.The primitive functional groups of building units determine the photocatalytic properties of corresponding Py-DBT-COFs.Specifically,Py-C-DBT-COF synthesized from Py-4CHO and DBT-2NH_(2)showcases a splendid H_(2)evolution rate as high as 21,377.7μmol/(g·h)(with 5 wt.%Pt)originating from better charge transfer capacity,which is significantly superior to that of Py-N-DBT-COF constructed from Py-4NH_(2)and DBT-2CHO.The distinct photocatalytic performances of the two COFs are demonstrated to originate from the different charge separation and transfer capabilities.This work supplies a new avenue for optimizing the photocatalytic performance of D-A COFs from the perspective of primitive functional group selections.
基金supported by the National Natural Science Foundation of China(No.22178266)the Fundamental Research Funds for the Central Universities,and China Postdoctoral Science Foundation(Nos.2021M691754 and 2023T160369).
文摘Photocatalytic hydrogen generation from hydrogen storage media is an effective and promising approach for the green hydrogen industry as well as for achieving carbon neutrality goals.However,the lower photocatalytic efficiency due to the limited light trapping capacity,low electron transfer rate,and severe aggregation of nanoparticles caused by high surface energy seriously restricts their practical application.Herein,we constructed a series of donor–acceptor(D–A)type covalent organic frameworks to confine ultrafine bimetallic Pt-based nanoclusters for photocatalytic hydrogen generation from ammonia borane(AB)hydrolysis.Under visible light irradiation at 20℃,PtCo_(2)@covalent organic framework(COF)showed the highest photocatalytic activity with a turnover frequency(TOF)of 486 min−1.Experiments and density functional theory(DFT)calculations reveal that the high catalytic activity is mainly attributed to the strong electronic interactions between D–A type COF and ultrafine PtCo_(2)nanoclusters.Specifically,the D–A type COF can significantly enhance the light-trapping ability by fine-tuning the electron-acceptor type in the framework,and accelerate the photogenerated electron transfer from D–A type COF to PtCo_(2)nanocluster,which promotes the adsorption and activation of H_(2)O and AB molecules and accelerates hydrogen release.Furthermore,PtCo_(2)@COF also exhibited ultra-high durability due to the significantly enhanced resistance to nanocluster aggregation caused by the nanopore confinement effect of D–A type COF.We believe that this work will provide a theoretical guide for the rational design of efficient D–A COFbased catalysts for photocatalysis.
基金supported by the National Natural Science Foundation of China (grant nos.22375070 and 22288101)the Jilin Province Science and Technology Development Plan (grant nos.20220101048JC and 20210101112JC)the 111 Project the Ministry of Education of China (grant no.B17020).
文摘Donor-Acceptor(D-A)alignment is considered a productive strategy to improve the charge separation efficiency of covalent organic frameworks(COFs)and enhance the charge-transfer yield(CTY)of COFs.Moreover,organic molecules containing heteroatoms can produce coordination interaction with PbI2 of perovskite precursor to affect the crystallization process,thereby impeding the decomposition and improving the stability of perovskite materials.Herein,a thiazolo[5,4-d]thiazole(TZ)-based D-A type COF_(TPDA-TZDA) was designed and synthesized from N,N,N′,N′-tetrakis(4-aminophenyl)-1,4-benzenediamine(TPDA)and 4,4′-(thiazolo[5,4-d]thiazole-2,5-diyl)dibenzaldehyde(TZDA).Upon incorporation into the FAPbI3 layer,COF_(TPDA-TZDA) not only restrained the perovskite defects and enhanced the grain size of perovskite films through the coordination effect of the N atoms of TZDA but also ameliorated the charge transport within the perovskite film,which was the benefit of the D-A structure of COF_(TPDA-TZDA).As a result,incorporation of COF_(TPDA-TZDA) into the perovskite solar cells(PSCs)led to a remarkable power conversion efficiency(PCE)of up to 23.51%.Furthermore,even after being stored in high relative humidity(RH≈60%)for 480 h,these PSCs maintained over 90.55%of their original PCE.This work sets the foundation for the development of highly efficient and stable PSCs by utilizing TZ-based D-A type COFs.
基金support from the National Natu-ral Science Foundation of China(52073046,52203006)the Na-tional Key Research and Development Program of China(2022YFB3807100,2022YFB3807102,2022YFB3807103)+4 种基金the Pro-gram of Shanghai Academic Research Leader(21XD1420200)the Chang Jiang Scholar Program(Q2019152)the Natural Science Foundation of Shanghai(23ZR1401100)the Shanghai Pujiang Program(21PJ1400300)the Fundamental Research Funds for the Central Universities(2232022D-06).
文摘Conjugated microporous polymers (CMPs) featuring extended π-structures, large specific surface area and tailor-made functionalities are a class of promising organic photocatalysts for hydrogen evolution reaction (HER) from water. However, the photocatalytic activities of most CMPs are severely hindered by slow charge transfer rate and fast charge recombination process. Herein, we develop a strategy for the synthesis of donor-acceptor CMPs through nickel(0)-catalyzed Yamamoto cross-coupling of 3,6-dibromo-9-(4-bromophenyl)carbazole (CZ) with 5,5'-dibromo-2,2'-bipyridine (DBPy) for efficient HER from water. The PCZN-4 prepared with a 2 : 3 stoichiometric ratio of CZ to DBPy exhibited the highest photocatalytic hydrogen evolution rate of 7160 μmol·g^(–1)·h^(–1), which was nearly equal to 179 times and 143 times that of PCZN-1 (40 μmol·g^(–1)·h^(–1)) and PCZN-6 (50 μmol·g^(–1)·h^(–1)) obtained by Yamamoto homocoupling of CZ and DBPy, respectively. Compared to the homocoupling counterparts, the enhanced photocatalytic activity of PCZN-4 results from improved separation efficiency of charge carriers. Interestingly, the photocatalytic H2 evolution performance of PCZN-4 could be further improved up to 17080 μmol·g^(–1)·h^(–1) by adjusting pH of the aqueous solution. This work offers a novel approach for improving photocatalytic efficiency by tuning the chemical structures and surrounding microenvironment of the polymer backbone.
基金financial support from the National Natural Science Foundation of China(Grant Nos.21901216 and 82074003,82174083)the Funds of Sichuan Science and Technology Program(23NSFSC0862,2021YFSY0041,2021YFH0064 and 2021ZHFP0032)+3 种基金the Opening subject under KF-202204 in the State Key Laboratory of Pharmaceutical Biotechnology,Nanjing University,China,the Fund of Science and Technology Agency of Chengdu(2019-YF09-00049-SN)the research project of the Administration of Traditional Chinese Medicine of Sichuan(2021MS110)the Open Project Program of Irradiation Preservation Technology Key Laboratory of Sichuan Province,Sichuan Institute of Atomic Energy(No.FZBC2020002)the Fundamental Research Funds for the Central Universities(2682020ZT85).
文摘The visible light-driven C2 or C3 amination of indoles without any additives was initiated via electron donor-acceptor (EDA) complex formed by indole and N-aminopyridinium salt.This method was compatible with a wide range of substrates and could proceed smoothly without the addition of any photocatalysts,transition-metal catalysts,or bases.A variety of studies were carried out to examine the presence of EDA complex.
基金supported by the National Natural Science Foundation of China(Nos.21971041 and 22001039)Natural Science Foundation of Fujian Province(No.2020J01447).
文摘The design and synthesis of photoactive macrocyclic molecules continue to attract attention because such species play important roles in supramolecular chemistry as well as photoelectronic applications.Donoracceptor(D-A)conjugated macrocycles are an emerging class of photoactive molecules due to their D-A conjugated structural characteristics and tunable optical properties.In addition,the well-defined cavities in such D-A macrocycles endow them with versatile host-guest properties.In this review,we provide a comprehensive summary of D-A conjugated macrocycle chemistry,detailing recent progress in the area of synthetic methods,optical properties,host-guest chemistry and applications of the underlying chemistry to chemical sensors,bioimaging and photoelectronic devices.Our objective is to provide not only a review of the fundamental findings,but also to outline future research directions where D-A conjugated macrocycles and their constructs may have a role to play.
基金support from the Na-tional Natural Science Foundation of China(52203134,11772271,12272085)the Open Research Fund of Chengdu University of Traditional Chinese Medicine State Key Laboratory Southwestern Chinese Medicine Resource.
文摘Controlling properties of crystalline solids by light remains a challenge because the lack of intrinsic structural flexibility limits the necessary molecular mobility for photoisomerization. In this work, we reported a series of visible-light-responsive covalent organic frameworks (COFs) by introducing donor-acceptor Stenhouse adducts (DASAs) with various electron-withdrawing moieties via a post-modified strategy. The DASAs-functionalized COFs exhibit distorted honeycomb layered topology with long-range periodicity. The DASAs grafted on the skeletons are pointing into the nanopores of COFs, which weakens intermolecular aggregation and ensures sufficient free volume to undergo reversible isomerization between linear and cyclic states. Furthermore, the crystalline and optical properties of COFs as well as the geometrical size and hydrophilicity inside the nanopores were reversibly controlled by alternating visible light irradiation and heat. Finally, methyl violet was used as the cargo molecules to be immobilized into the nanopores of COFs, which showed fast release under controlling of visible light.
基金financially supported by the National Key R&D Program of‘Key Scientific Issues of Transformative Technology’(No.2018YFA0703200)the National Natural Science Foundation of China(Nos.U22A6002,91833306,21922511 and 51873216)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB30000000)the CAS Project for Young Scientists in Basic Research(No.YSBR-053)the CAS-Croucher Funding Scheme for Joint Laboratoriesthe CAS Cooperation Project(No.121111KYSB20200036)the Lu Jiaxi international team(No.GJTD-2020-02)。
文摘The recent progress in the design and synthesis of high-performance donor-acceptor conjugated polymeric semiconducting materials is reviewed from the perspective of multiscale structures.The multiscale of conjugated polymers is from the primary one-dimensional polymer molecular scale to the secondary polymer-chains interaction scale,and then to the tertiary polymer aggregate scale.This review focuses on the design and synthesis of polymer molecules,proposes new classification rules,and rationally summarizes the design strategies and modulation methods of polymers.We describe the recent progress from these three aspects:(1)the modification ofπ-conjugated backbone,(2)the evolution of the polymerization methods,and(3)the regulation of aggregate-state structure.
基金the National Natural Science Foundation of China(Nos.91833304 and 61761136013).
文摘Comprehensive Summary Conjugated fused-ring structures have attracted extensive attention due to their high molecular rigidity to restrain excited-state relaxation and non-radiative decay,and further to enhance the luminance efficiency for emissive materials.Herein,we develop a series of donor-acceptor type thermally activated delayed fluorescence(TADF)emitters by introducing fused-ring 5H-benzofuro[3,2-c]carbazole(32BFCz)as electron donating unit.Through optimizing the numbers and structure of donor and acceptor moieties,three compounds named 32BFCzA,mCF3BFCzOXD and dCF3BFCzOXD are designed,which are composed by mono-32BFCz/trifluoromethylpicolinonitrile,penta-BFCz/3-(trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)benzene and penta-32BFCz/3,5-bis(trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)benzene as donor/acceptor groups,respectively.
基金the National Natural Science Foundation of China(grant no.22207092)the Natural Science Basic Research Plan of Shaanxi Province of China(grant no.2022JQ-091)+3 种基金the Fundamental Research Funds for the Central Universities(grant no.G2021KY05117)from Chinathe National Research Foundation(grant no.NRF-CRP22-2019-0002)the Ministry of Education(grant no.MOE-T2EP30120-0007)A*STAR(grant no.A20E5c0087)from Singapore for their financial support of this research.
文摘Chemical glycosylation methodologies for the preparation of the bioactive oligosaccharides and glycoconjugates promise reliable access to these compounds as homogeneous materials with welldefined structures in sufficient amounts.Here we report a novel activation method of thio(seleno)glycosides employing donor-acceptor cyclopropane(DAC)agents and Sc(OTf)_(3).The Lewis acid catalyst converts DAC into a formal 1,3-zwitterionic species that in turn activates thioglycosides to furnish a glycosyl 1,4-zwitterionic intermediate,interconverting with reactive glycosyl oxocarbenium in the solution with reversible leaving-group dissociation.This activation method effectively promotes glycosylation reactions between both armed and disarmed thioglycosides and structurally diverse acceptors,affording oligosaccharides with satisfactory yields.The usefulness of our activation method has been demonstrated by the mechanism-inspired 2,4-dinitrobenzenesulfonyl(DNs)group directed S_(N)2-like glycosylation and the facile preparation of both linear and branched trisaccharides in one pot via controlled sequential activation of thioglycoside donors.
基金the financial support from the National Natural Science Foundation of China(grant nos.21975260 and 22175180)the National Natural Science Foundation of China-National Research Council of Italy(NSFC-CNR)Exchange Program of NSFC(grant no.22011530391)The GIWAXS measurements were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute(grant nos.2022A1654,2022A1777,and 2022A1822).
文摘Imbalanced charge-carrier extraction remains an issue aggravating interfacial charge accumulation and recombination.More hopping transport channels could accelerate the extraction of charge.Here,we demonstrated an effective“bridging interface”strategy between the perovskite/2,2′,7,7′-tetrakis(N,N-di-pmethoxyphenylamine)-9,9′-spirobifluorene(spiro-OMeTAD)that modulates interfacial charge transfer and improves hole mobility using radical-containing donor-acceptor nanographenes(D-A NGs)possessing electron-deficient perchlorinated NGs and electron-rich aniline derivatives.The fully delocalized backbone of nanographene formed a conjugated bridge for intermolecular charge transfer and generated stable radical cations,verified by electron spin resonance.Lamellar andπ-πstacking orientation of D-A NGs also provided advantageous hopping transport channels.Besides favorable charge transfer within D-A NGs,systematic explorations indicated a strong interface coupling and noticeable charge transfer across the D-A NGs and perovskite interface,where electrons would flow from D-A NGs to perovskite,and holes would flow from perovskite to D-A NGs.Moreover,the hole mobility of spiro-OMeTAD was also enhanced because the D-A NGs would diffuse into the spiro-OMeTAD layer.As a result,planar n-i-p perovskite solar cellsmodified byD-ANG-OMe/D-ANG-tBudeliveredchampion power conversion efficiencies(PCEs)of 23.25%and 23.51%,respectively.