美国冰、云和陆地高程二号卫星(The Ice,Cloud,and Land Elevation Satellite-2,ICESat-2)是ICESat卫星的继任者,旨在监测地球的冰盖、冰川、海洋和陆地高程的变化等,其携带的地形激光高度计系统(ATLAS)发射532 nm波长的激光,具备一定...美国冰、云和陆地高程二号卫星(The Ice,Cloud,and Land Elevation Satellite-2,ICESat-2)是ICESat卫星的继任者,旨在监测地球的冰盖、冰川、海洋和陆地高程的变化等,其携带的地形激光高度计系统(ATLAS)发射532 nm波长的激光,具备一定的水体穿透能力。作为光子计数式激光雷达,ICESat-2的数据易受外界环境影响而接收到大量噪声光子,导致光子数据密度分布不均匀。本文提出了一种基于密度峰值聚类(Density Peak Clustering,DPC)算法的光子去噪方法,通过数据集的欧式距离计算局部密度作为点云数据的属性,采用基尼指数自适应选择最优截断距离,分别对日间和夜间数据进行多次实验,得出了两类数据的局部密度阈值参数。本文选取三处实验区域进行信号光子去噪分析,使用本文方法的去噪精度F值优于官方置信度标签去噪和传统密度聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN),可以应用于星载激光雷达数据去噪处理。最后,对去噪后的华光礁区域信号光子进行折射校正,与收集的DEM数据进行对比可见,结合本文去噪方法可以使用ICESat-2数据进行浅水域的水深测量。展开更多
Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)t...Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)to retrieve the CTP.However,the CTP retrieved by the two methods shows inconsistent results in certain cases,and large uncertainties in low and thin cloud retrievals,which may lead to challenges in subsequent applications.This study proposes a synergistic algorithm that considers both O_(2)A-bands and polarized bands using a random forest(RF)model.LiDAR CTP data are used as the true values and the polarized and non-polarized measurements are concatenated to train the RF model to determine CTP.Additionally,through analysis,we proposed that the polarized signal becomes saturated as the cloud optical thickness(COT)increases,necessitating a particular treatment for cases where COT<10 to improve the algorithm's stability.The synergistic method was then applied to the directional polarized camera(DPC)and Polarized and Directionality of the Earth’s Reflectance(POLDER)measurements for evaluation,and the resulting retrieval accuracy of the POLDER-based measurements(RMSEPOLDER=205.176 hPa,RMSEDPC=171.141 hPa,R^(2)POLDER=0.636,R^(2)DPC=0.663,respectively)were higher than that of the MODIS and POLDER Rayleigh pressure measurements.The synergistic algorithm also showed good performance with the application of DPC data.This algorithm is expected to provide data support for atmosphere-related fields as an atmospheric remote sensing algorithm within the Cloud Application for Remote Sensing,Atmospheric Radiation,and Updating Energy(CARE)platform.展开更多
文摘美国冰、云和陆地高程二号卫星(The Ice,Cloud,and Land Elevation Satellite-2,ICESat-2)是ICESat卫星的继任者,旨在监测地球的冰盖、冰川、海洋和陆地高程的变化等,其携带的地形激光高度计系统(ATLAS)发射532 nm波长的激光,具备一定的水体穿透能力。作为光子计数式激光雷达,ICESat-2的数据易受外界环境影响而接收到大量噪声光子,导致光子数据密度分布不均匀。本文提出了一种基于密度峰值聚类(Density Peak Clustering,DPC)算法的光子去噪方法,通过数据集的欧式距离计算局部密度作为点云数据的属性,采用基尼指数自适应选择最优截断距离,分别对日间和夜间数据进行多次实验,得出了两类数据的局部密度阈值参数。本文选取三处实验区域进行信号光子去噪分析,使用本文方法的去噪精度F值优于官方置信度标签去噪和传统密度聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN),可以应用于星载激光雷达数据去噪处理。最后,对去噪后的华光礁区域信号光子进行折射校正,与收集的DEM数据进行对比可见,结合本文去噪方法可以使用ICESat-2数据进行浅水域的水深测量。
基金the National Natural Science Foundation of China(Grant Nos.42025504,No.41905023)National Natural Science Youth Science Foundation(Grant No.41701406)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.:2021122).
文摘Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)to retrieve the CTP.However,the CTP retrieved by the two methods shows inconsistent results in certain cases,and large uncertainties in low and thin cloud retrievals,which may lead to challenges in subsequent applications.This study proposes a synergistic algorithm that considers both O_(2)A-bands and polarized bands using a random forest(RF)model.LiDAR CTP data are used as the true values and the polarized and non-polarized measurements are concatenated to train the RF model to determine CTP.Additionally,through analysis,we proposed that the polarized signal becomes saturated as the cloud optical thickness(COT)increases,necessitating a particular treatment for cases where COT<10 to improve the algorithm's stability.The synergistic method was then applied to the directional polarized camera(DPC)and Polarized and Directionality of the Earth’s Reflectance(POLDER)measurements for evaluation,and the resulting retrieval accuracy of the POLDER-based measurements(RMSEPOLDER=205.176 hPa,RMSEDPC=171.141 hPa,R^(2)POLDER=0.636,R^(2)DPC=0.663,respectively)were higher than that of the MODIS and POLDER Rayleigh pressure measurements.The synergistic algorithm also showed good performance with the application of DPC data.This algorithm is expected to provide data support for atmosphere-related fields as an atmospheric remote sensing algorithm within the Cloud Application for Remote Sensing,Atmospheric Radiation,and Updating Energy(CARE)platform.