期刊文献+
共找到7,251篇文章
< 1 2 250 >
每页显示 20 50 100
An improved strain-softening constitutive model of granite considering the effect of crack deformation
1
作者 Yapeng Li Qiang Zhang +2 位作者 Qiuxin Gu Peinan Wu Binsong Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1202-1215,共14页
This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total str... This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total strain is a combination of plastic,elastic,and crack strains.The constitutive relationship between the crack strain and the stress was further derived.The evolutions of mechanical parameters,i.e.strength parameters,dilation angle,unloading elastic modulus,and deformation parameters of crack,with the plastic strain and confining pressure were studied.With the increase in plastic strain,the cohesion,friction angle,dilation angle,and crack Poisson's ratio initially increase and subsequently decrease,and the unloading elastic modulus and the crack elastic modulus nonlinearly decrease.The increasing confining pressure enhances the strength and unloading elastic modulus,and decreases the dilation angle and Poisson's ratio of the crack.The theoretical triaxial compressive stress-strain curves were compared with the experimental results,and they present a good agreement with each other.The improved constitutive model can well reflect the nonlinear mechanical behavior of granite. 展开更多
关键词 STRAIN-SOFTENING Crack deformation effect Plastic shear strain Constitutive model
下载PDF
αDecay in extreme laser fields within a deformed Gamow-like model
2
作者 Qiong Xiao Jun-Hao Cheng +3 位作者 Yang-Yang Xu You-Tian Zou Jun-Gang Deng Tong-Pu Yu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期131-144,共14页
In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a sligh... In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population. 展开更多
关键词 αDecay deformed Gamow-like model HALF-LIVES Extreme laser field Penetration probability
下载PDF
Characterizing permeability-porosity relationships of porous rocks using a stress sensitivity model in consideration of elastic-structural deformation and tortuosity sensitivity
3
作者 Ronghe Xu Liqin Wang +1 位作者 Xiaoli Zhao Yuze Mao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3437-3451,共15页
Clarifying the relationship between stress sensitivities of permeability and porosity is of great significance in guiding underground resource mining.More and more studies focus on how to construct stress sensitivity ... Clarifying the relationship between stress sensitivities of permeability and porosity is of great significance in guiding underground resource mining.More and more studies focus on how to construct stress sensitivity models to describe the relationship and obtain a comprehensive stress sensitivity of porous rock.However,the limitations of elastic deformation calculation and incompleteness of considered tortuosity sensitivity lead to the fact that the existing stress sensitivity models are still unsatisfactory in terms of accuracy and generalization.Therefore,a more accurate and generic stress sensitivity model considering elastic-structural deformation of capillary cross-section and tortuosity sensitivity is proposed in this paper.The elastic deformation is derived from the fractal scaling model and Hooke's law.Considering the effects of elastic-structural deformation on tortuosity sensitivity,an empirical formula is proposed,and the conditions for its applicability are clarified.The predictive performance of the proposed model for the permeability-porosity relationships is validated in several sets of publicly available experimental data.These experimental data are from different rocks under different pressure cycles.The mean and standard deviation of relative errors of predicted stress sensitivity with respect to experimental data are 2.63%and 1.91%.Compared with other models,the proposed model has higher accuracy and better predictive generalization performance.It is also found that the porosity sensitivity exponent a,which can describe permeability-porosity relationships,is 2 when only elastic deformation is considered.a decreases from 2 when structural deformation is also considered.In addition,a may be greater than 3 due to the increase in tortuosity sensitivity when tortuosity sensitivity is considered even if the rock is not fractured. 展开更多
关键词 Stress sensitivity model Permeability-porosity relationships Elastic-structural deformation Tortuosity stress sensitivity
下载PDF
Rainfall-triggered waste dump instability analysis based on surface 3D deformation in physical model test
4
作者 LI Hanlin JIN Xiaoguang +2 位作者 HE Jie XUE Yunchuan YANG Zhongping 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1549-1563,共15页
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra... Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability. 展开更多
关键词 Waste dump stability Physical model test Surface 3D deformation Stability identification
下载PDF
Analytical model for predicting time-dependent lateral deformation of geosynthetics-reinforced soil walls with modular block facing
5
作者 Luqiang Ding Chengzhi Xiao Feilong Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期711-725,共15页
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general... To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed. 展开更多
关键词 GEOSYNTHETICS Creep behavior Geosynthetics-reinforced soil(GRS)walls Lateral deformation Analytical model
下载PDF
Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method 被引量:2
6
作者 Li Hu Mengwei Lang +4 位作者 Laixin Shi Mingao Li Tao Zhou Chengli Bao Mingbo Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1016-1028,共13页
Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s... Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX). 展开更多
关键词 Mg-RE-Zn alloy Hot deformation Microstructure evolution Constitutive model Finite element simulation
下载PDF
General Kinetostatic Modeling and Deformation Analysis of a Two-Module Rod-Driven Continuum Robot with Friction Considered 被引量:2
7
作者 Peiyi Wang Xinhua Yang +1 位作者 Xiangyang Wang Sheng Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期110-122,共13页
Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and comp... Continuum robots actuated by flexible rods have large potential applications,such as detection and operation tasks in confined environments,since the push and pull actuation of flexible rods withstand tension and compressive force,and increase the structure's rigidity.In this paper,a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established.Then,the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics.Four different in-plane configurations under the external load term as S1,S2,C1,and C2 are defined.Taking a bending plane as an example,the tip deformation along thex-axis of these shapes is simulated and compared,which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2.Furthermore,the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%,and it is no more than 4.7%under the external load.The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction. 展开更多
关键词 Rod-driven continuum robot Kinetostatic model Cosserat rod theory deformation and stiffness analysis
下载PDF
Deformation critical threshold estimation of Xiaowan ultrahigh arch dam with time-varying grey model 被引量:1
8
作者 Er-feng Zhao Bo Li +1 位作者 Hao Chen Bing-bing Nie 《Water Science and Engineering》 EI CAS CSCD 2023年第3期302-312,共11页
The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to ov... The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to overload testing with a geological model and the measured time series of installed perpendicular lines, the space and time evolution characteristics of the arch dam structure were analyzed, and its mechanical performance was evaluated. Subsequently, the deformation centroid of the deflective curve was suggested to indicate the magnitude and unique distribution rules for a typical dam section using the measured deformation values at multi-monitoring points. The ellipse equations of the critical ellipsoid for the centroid were derived from the historical measured time series. Hydrostatic and seasonal components were extracted from the measured deformation values with a traditional statistical model, and residuals were adopted as a grey component. A time-varying grey model was developed to accurately predict the evolution of the deformation behavior of the ultrahigh arch dam during future operation. In the developed model, constant coefficients were modified so as to be time-dependent functions, and the prediction accuracy was significantly improved through introduction of a forgetting factor. Finally, the critical threshold was estimated, and predicted ellipsoids were derived for the Xiaowan arch dam. The findings of this study can provide technical support for safety evaluation of the actual operation of ultrahigh arch dams and help to provide early warning of abnormal changes. 展开更多
关键词 Arch dam deformation behavior EVOLUTION Critical threshold Grey model
下载PDF
基于VOF-DPM模型的明渠含沙数值模拟及量水方案比选
9
作者 唐渊 马文波 +5 位作者 温红艳 王国强 申丽霞 吴建华 张玉胜 成一雄 《人民黄河》 CAS 北大核心 2024年第11期126-132,148,共8页
为探究含沙水流对明渠流量测量精度的影响,基于Fluent软件采用VOF-DPM模型对明渠进行数值模拟,分别模拟不同进口流速和含沙量组合条件下渠道内流量、液位及泥沙颗粒分布,并将数值模拟结果与试验结果进行对比分析,计算出各量水设施的流... 为探究含沙水流对明渠流量测量精度的影响,基于Fluent软件采用VOF-DPM模型对明渠进行数值模拟,分别模拟不同进口流速和含沙量组合条件下渠道内流量、液位及泥沙颗粒分布,并将数值模拟结果与试验结果进行对比分析,计算出各量水设施的流量误差与液位误差。结果表明:采用VOF-DPM模型可以较好地模拟含沙水流在明渠的流态,通过开展不同流量级的流量测试可知,在不同含沙量条件下,巴歇尔槽流量计误差最小(-3%~1%),超声流量计(-4%~3%)和电磁流量计(-9%~2%)量测效果均较好,雷达流量计误差较大(-20%~4%),说明非接触式流量计在高含沙量、大流量的情况下需进一步提高测量精度;超声液位、电磁液位与雷达液位误差均较大,试验中尾部巴歇尔槽壅水以及泥沙在渠道底部淤积是造成较大液位误差的原因之一。 展开更多
关键词 数值模拟 VOF-dpm模型 含沙量 测流精度
下载PDF
Displacement field reconstruction in landslide physical modeling by using a terrain laser scanner e Part 2:Application and large strain/displacement and water effect analysis 被引量:1
10
作者 Dongzi Liu Xingcheng Gong +3 位作者 Hongping Wang Xinli Hu Wenbo Zheng Xinyu Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4077-4087,共11页
Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a... Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects. 展开更多
关键词 Laser scanner LANDSLIDES Physical modeling deformation field
下载PDF
Using multi-matching system based on a simplified deformable model of the human iris for iris recognition 被引量:2
11
作者 MING Xing , XU Tao , WANG Zheng-xuan 1 2 3 1. College of Computer Science and Technology, Nanling Campus,Jilin University, 5988 Renmin Street,Changchun 130022, P. R. China 2. College of Mechanical Science and Engineering, Nanling Campus,Jilin University, 5988 Renmin Street, Changchun 130022, P. R. China 3. College of Computer Science and Technology, Qianwei Campus,Jilin University, 10 Qianwei Road, Changchun 130012, P. R. China. 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第3期183-190,共8页
A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wa... A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wavelet transform. In the matching stage it worked in a crude manner. Driven by a simplified deformable iris model, the crude matching was refined. By means of such multi-matching system, the task of iris recognition was accomplished. This process can preserve the elastic deformation between an input iris image and a template and improve precision for iris recognition. The experimental results indicate the va- lidity of this method. 展开更多
关键词 iris recognition wavelet transform feature points deformable model
下载PDF
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation 被引量:1
12
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Mechanical stress and deformation analyses of pressurized cylindrical shells based on a higher-order modeling
13
作者 S.Mannani L.Collini M.Arefi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期24-33,共10页
In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoi... In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoidal shear deformation theory.Thickness stretching formulation is accounted for more accurate analysis.The total transverse deflection is divided into bending,shear and thickness stretching parts in which the third term is responsible for change of deflection along the thickness direction.The axisymmetric formulations are derived through principle of virtual work.A parametric study is presented to investigate variation of stress and strain components along the thickness and longitudinal directions.To explore effect of thickness stretching model on the static results,a comparison between the present results with the available results of literature is presented.As an important output,effect of micro-scale parameter is studied on the static stress and strain distribution. 展开更多
关键词 Principle of virtual work Thickness-stretched and shear deformable model Stress and strain analyses Cylindrical pressure vessel
下载PDF
基于CFD-DPM模型的T型网式过滤器冲蚀特性模拟与分析
14
作者 项旭东 张钟莉莉 +2 位作者 曾揭峰 郑强 杨培岭 《排灌机械工程学报》 CSCD 北大核心 2024年第9期900-906,共7页
为分析滤网冲蚀情况,采用多孔阶跃模型和滤网缩尺模型,结合CFD-DPM两相流模型通过主因素分析方法对滤网冲蚀速率规律进行数值模拟分析与预测,探求整体不同区域滤网的冲蚀效应情况,并通过基于正交试验的多因素主效应分析得出各因素对最... 为分析滤网冲蚀情况,采用多孔阶跃模型和滤网缩尺模型,结合CFD-DPM两相流模型通过主因素分析方法对滤网冲蚀速率规律进行数值模拟分析与预测,探求整体不同区域滤网的冲蚀效应情况,并通过基于正交试验的多因素主效应分析得出各因素对最大冲蚀速率的影响显著性大小.结果表明:在一定范围内最大冲蚀速率与颗粒粒径呈负相关而与质量流率、流速呈正相关;滤网表面中滤孔面普遍比迎水面更易受冲蚀破坏,背水面几乎不受冲蚀影响;颗粒粒径、质量流率对冲蚀高发区域范围大小影响较小(面积增幅为15.0%~16.7%),而流速对其影响较明显(面积增幅为50.0%);显著性检验中,流速、质量流率、颗粒粒径对最大冲蚀速率的P值分别为0.01280,0.00269和3.712×10^(-9),均呈显著性相关. 展开更多
关键词 网式过滤器 dpm模型 冲蚀速率 显著性分析 正交试验
下载PDF
A NEW DEFORMABLE MODEL USING LEVEL SETS FOR SHAPE SEGMENTATION 被引量:1
15
作者 He Ning Zhang Peng Lu Ke 《Journal of Electronics(China)》 2009年第3期353-358,共6页
In this paper, we present a new deformable model for shape segmentation, which makes two modifications to the original level set implementation of deformable models.The modifications are motivated by difficulties that... In this paper, we present a new deformable model for shape segmentation, which makes two modifications to the original level set implementation of deformable models.The modifications are motivated by difficulties that we have encountered in applying deformable models to segmentation of medical images.The level set algorithm has some advantages over the classical snake deformable models.However, it could develop large gaps in the boundary and holes within the objects.Such boundary gaps and holes of objects can cause inaccurate segmentation that requires manual correction.The proposed method in this paper possesses an inherent property to detect gaps and holes within the object with a single initial contour and also does not require specific initialization.The first modification is to replace the edge detector by some area constraint, and the second modification utilizes weighted length constraint to regularize the curve under evolution.The proposed method has been applied to both synthetic and real images with promising results. 展开更多
关键词 Image segmentation Level sets CONSTRAINT deformable model
下载PDF
Effect of Gd Addition on Hot Deformation Behavior and Microstructure Evolution of 7075 Aluminum Alloy
16
作者 LI Yajie FAN Xuran +2 位作者 QIN Fengming ZHAO Xiaodong CAO Kefan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1595-1612,共18页
In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at... In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at strain rates of 0.001,0.01,0.1,and 1 s^(-1)with the temperatures ranging from 350 to 450℃.The microstructural evolution during deformation was characterized using optical microscopy and electron backscatter diffraction(EBSD)techniques.The experimental results indicate that the addition of the rare earth element Gd significantly increases the peak flow stress and thermal activation energy of the alloy.Due to the pinning effect of rare earth phases,dislocation movement is hindered,leading to an increased level of work hardening in the alloy.However,the dynamic recrystallization of the alloy is complicated.At a high Z(Zener-Hollomon parameter)values,recrystallization occurs in the form of DDRX(Discontinuous Dynamic Recrystallization),making it easier to nucleate at grain boundaries.As the Z value decreases gradually,the recrystallization mechanism transitions from discontinuous dynamic recrystallization(DDRX)to continuous dynamic recrystallization(CDRX).At a low Z values with the strain rate of 0.001 s^(-1),the inhibitory effect of rare earths weakens,resulting in a comparable recrystallization ratio between Al-Zn-Mg-Cu-Gd alloy and 7075 aluminum alloy.Moreover,the average grain size of the aluminum alloy with Gd addition is only half that of 7075 aluminum.The addition of Gd provides Orowan and substructure strengthening for the alloy,which greatly improves the work-hardening of the alloy compared with 7075 aluminum alloy and improves the strength of the alloy. 展开更多
关键词 Al-Zn-Mg-Cu-Gd hot deformation behavior constitutive model dynamic recrystallization microstructure evolution
下载PDF
Deformation Characteristics of Hydrate-Bearing Sediments
17
作者 DONG Lin LI Yanlong +4 位作者 ZHANG Yajuan HU Gaowei LIAO Hualin CHEN Qiang WU Nengyou 《Journal of Ocean University of China》 CAS CSCD 2024年第1期149-156,共8页
The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the d... The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development. 展开更多
关键词 gas hydrate deformation characteristics volumetric strain lateral strain prediction model
下载PDF
Displacement field reconstruction in landslide physical modeling by using a terrain laser scanner e Part 1:Methodology,error analysis and validation
18
作者 Dongzi Liu Xingcheng Gong +3 位作者 Xinli Hu Hongping Wang Wenbo Zheng Lifei Niu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4066-4076,共11页
Laser scanning technology has been widely used in landslide aspects.However,the existing deformation analysis based on terrain laser scanners can only provide limited information,which is insufficient for understandin... Laser scanning technology has been widely used in landslide aspects.However,the existing deformation analysis based on terrain laser scanners can only provide limited information,which is insufficient for understanding landslide kinematics and failure mechanisms.To overcome this limitation,this paper proposes an automated method for processing point clouds collected in landslide physical modeling.This method allows the acquisition of quantitative three-dimensional(3D)deformation field information.The results show the organized and spatially related point cloud segmentation in terms of spherical targets.The segmented point clouds can be fitted to determine the locations of all preset targets and their corresponding location changes.The proposed method has been validated based on theoretical analysis and numerical and physical tests,which indicates that it can batch-process massive data sets with high computational efficiency and good noise resistance.Compared to existing methods,this method shows a significant potential for understanding landslide kinematics and failure mechanisms and advancing the application of 3D laser scanning in geotechnical modeling. 展开更多
关键词 Terrain laser scanner LANDSLIDES Physical modeling deformation field
下载PDF
Construction of an Arrhenius constitutive model for Mg-Y-Nd-Zr-Gd rare earth magnesium alloy based on the Zener-Hollomon parameter and objective evaluation of its accuracy in the twinning-rich intervals
19
作者 Luyi Han Xiangjian Zhu +2 位作者 Dejin Wei Yanan Yu Guangchun Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2890-2908,共19页
According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheolog... According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheological behaviors were predicted.The model exhibited relatively serious prediction distortion in the low-temperature and high-strain rate parameter interval,and its accuracy was still unsatisfactory even after modification by a correction operator considering the coupling of temperature and strain rate.The microstructure characterization and statistical analysis showed that a large number of twinning occurred in the parameter intervals with prediction deviation.The occurrence of twinning complicated the local internal stress distribution by drastically changing the crystal orientation and led to significant fluctuations in the macroscopic strain-stress and hardening curves relative to the rheological processes dominated by the dislocation and softening mechanisms,making the logarithm of the strain rate and stress deviate from the linear relationship.This twinning phenomenon was greatly influenced by the temperature and strain rate.Herein,the influence mechanism on twinning behavior was analyzed from the perspective of the interaction of dislocation and twinning. 展开更多
关键词 RE magnesium alloy Hot deformation Zener-Hollomon parameters Arrhenius constitutive model DISLOCATION TWINNING
下载PDF
Case study on the mechanics of NPR anchor cable compensation for large deformation tunnel in soft rock in the Transverse Mountain area,China
20
作者 LI Yong ZHENG Jing +3 位作者 HUO Shu-sen WANG Feng-nian HE Man-chao TAO Zhi-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2054-2069,共16页
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri... A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas. 展开更多
关键词 soft rock large deformation NPR anchor cable physical model numerical simulation compensation mechanics
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部