Fermented foods are a potential source to produce novel dipeptidyl peptidase-IV inhibitory peptides(D4IPs).In this study,the fermented mandarin fish(Chouguiyu)was used to screen D4IPs and their formation mechanism was...Fermented foods are a potential source to produce novel dipeptidyl peptidase-IV inhibitory peptides(D4IPs).In this study,the fermented mandarin fish(Chouguiyu)was used to screen D4IPs and their formation mechanism was studied by metagenomics and peptidomics.A total of 400 D4IPs with DPP-IV inhibition structure and high hydrophobicity were identified.The correlation network map showed that Lactococcus,Bacillus,Lysobacter,Pelagivirga,Kocuria,Escherichia,Streptococcus,and Peptostreptococcus were significantly correlated with the most D4IPs.Four stable D4IPs,including KAGARALTDAETAT,GEKVDFDDIQK,VVDADEMYLKGK,and GQKDSYVGDEAQ were respectively from the precursor proteins parvalbumin,troponin,myosin,and actin,and were mainly formed by the hydrolysis of subtilisin(EC 3.4.21.62),aspartic proteinase(EC 3.4.23.1),thermolysin(EC 3.4.24.27),oligopeptidase B(EC 3.4.21.83),and proteinase P1(EC 3.4.21.96)from Bacillus,Kocuria,Lysobacter,Lactococcus,and Peptostreptococcus.The inhibition mainly resulted from the hydrogen bond and salt bridge between D4IPs and DPP-IV enzyme.This study provides important information on the proteases and related microbial strains to directionally prepare D4IPs in Chouguiyu.展开更多
AIM: To assess the effect of our novel cell-permeable nuclear factor-kappaB (NF-κB) inhibitor peptide PN50 in an experimental model of acute pancreatitis. PN50 was produced by conjugating the cell-penetrating penetra...AIM: To assess the effect of our novel cell-permeable nuclear factor-kappaB (NF-κB) inhibitor peptide PN50 in an experimental model of acute pancreatitis. PN50 was produced by conjugating the cell-penetrating penetratin peptide with the nuclear localization signal of the NF-κB p50 subunit.METHODS: Pancreatitis was induced in male Wistar rats by administering 2×100 μg/kg body weight of cholecystokininoctapeptide (CCK) intraperitoneally (IP) at an interval of 1 h. PN50-treated animals received 1 mg/kg of PN50 IP 30 min before or after the CCK injections. The animals were sacrificed 4 h after the first injection of CCK.RESULTS: All the examined laboratory (the pancreatic weight/body weight ratio, serum amylase activity,pancreatic levels of TNF-α and IL-6, degree of lipid peroxidation, reduced glutathione levels, NF-κB binding activity, pancreatic and lung myeloperoxidase activity) and morphological parameters of the disease were improved before and after treatment with the PN50 peptide.According to the histological findings, PN50 protected the animals against acute pancreatitis by favoring the induction of apoptotic, as opposed to necrotic acinar cell death associated with severe acute pancreatitis.CONCLUSION: Our study implies that reversible inhibitors of stress-responsive transcription factors like NF-κB might be clinically useful for the suppression of the severity of acute pancreatitis.展开更多
The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and ch...The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-? converting enzyme(ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-Iinhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC_(50) of 5.75 μmol L^(-1). The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.展开更多
The hydrolysis of velvet bean (Mucuna pruriens) protein in the presence of Alcalase?-Flavourzyme? and Pepsin-Pancreatin was investigated. The results showed that Alcalase?-Flavourzyme? (29.08%) sequential system catal...The hydrolysis of velvet bean (Mucuna pruriens) protein in the presence of Alcalase?-Flavourzyme? and Pepsin-Pancreatin was investigated. The results showed that Alcalase?-Flavourzyme? (29.08%) sequential system catalyzed the hydrolysis most efficiently that Pepsin-Pancreatin (24.78%). In addition, the higher ACE-I inhibitory activity was achieved with the sequential system Alcalase?-Flavourzyme? (33.13%). Furthermore, the concentration of peptides employing an ultrafiltration (UF) system or their purification by gel filtration chromatography showed that the oligomeric peptides with lower molecular weight registered the highest ACE-I inhibitory activity. It has been demonstrated that Mucuna pruriens protein hydrolysates could serve as a source of peptides with ACE inhibitory activity and this activity can be attributed mainly to the mixture of short peptides in the hydrolysate.展开更多
The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate th...The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to con- trol the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in con- ditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Im- portantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.展开更多
In order to prepare angiotensin I-converting enzyme(ACE)inhibitory peptides,distilled spent grains of Chinese strong-flavor Baijiu were hydrolyzed by alcalase followed by papain under optimized conditions.A superior A...In order to prepare angiotensin I-converting enzyme(ACE)inhibitory peptides,distilled spent grains of Chinese strong-flavor Baijiu were hydrolyzed by alcalase followed by papain under optimized conditions.A superior ACE inhibitory peptide was separated and purifi ed by ultrafi ltration and high-performance liquid chromatography(HPLC),and its amino acid sequence was further identified as Gln-Gly-Val-Pro(QGVP)by electrospray mass spectrometry(ESI-MS).QGVP formed 6 hydrogen bonds with the active site of ACE,which is responsible for reducingα-helix structure content of ACE causing subsequent inactivation.M oreover,it showed no significant cytotoxicity toward human umbilical vein endothelial cells(HUVECs),a nd signifi cantly i nduced phosphorylation of endothelial nitric oxide synthase(p-e NOS)and decreased endothelin 1(END1)expression in angiotensin I(Ang I)-treated HUVECs,demonstrating the potential antihypertensive effect.The peptide QGVP hydrolyzed from distilled spent grain proteins of Chinese strong-fl avor Baijiu was expected to be used as a food ingredient to prevent or co-treat hypertension with other chemical drugs.展开更多
The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth invest...The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth investigation of repetitive motifs in various ice-binding proteins(IBPs)with evolution analysis.In this way,several peptides with notable antifreeze activity were developed.In particular,a designed antifreeze peptide named AVD exhibits ideal ice recrystallization inhibition(IRI),solubility,and biocompatibility,making it suitable for use as a cryoprotective agent(CPA).A mutation analysis and molecular dynamics(MD)simulations indicated that the Thr6 and Asn8 residues of the AVD peptide are fundamental to its ice-binding capacity,while the Ser18 residue can synergistically enhance their interaction with ice,revealing the antifreeze mechanism of AVD.Furthermore,to evaluate the cryoprotection potential of AVD,the peptide was successfully employed for the cryopreservation of various cells,which demonstrated significant post-freezing cell recovery.This work opens up a new avenue for designing antifreeze materials and provides peptide-based functional modules for synthetic biology.展开更多
Amyloid-β (Aβ) protein aggregation is the main hallmark of Alzheimer's disease (AD). Inhibition of Aft fibrillation is thus a promising therapeutic approach to the prevention and treatment of AD. Recently, we d...Amyloid-β (Aβ) protein aggregation is the main hallmark of Alzheimer's disease (AD). Inhibition of Aft fibrillation is thus a promising therapeutic approach to the prevention and treatment of AD. Recently, we designed a heptapeptide inhibitor, LVFFARK (LK7). LK7 shows a promising inhibitory capability on Aft fibrillation, but is prone to self-assembling and displays high cytotoxicity, which would hinder its practical application. Herein, we modified LK7 by a head-to-tail cyclization and obtained a cyclic LK7 (cLK7). cLK7 exhibits a different self-assembly behavior from LK7, and has higher stability against proteolysis than LK7 and little cytotoxicity to SH-SY5Y cells. Thermodynamic analysis revealed that both LK7 and cLK7 could bind to Aβ40 by electrostatic interactions, hydrogen bonding and hydrophobic interactions, but the binding affinity of cLK7 for Afl40 (KD = 4.96 μmol/L) is six times higher than that of LK7 (KD = 32.2 μmol/L). The strong binding enables cLK7 to stabilize the secondary structure of Aβ40 and potently inhibit its nucleation, fibrillation and cytotoxicity at extensive concentration range, whereas LK7 could only moderately inhibit Aβ40 fibrillation and cytotoxicity at low concentrations. The findings indicate that the peptide cyclization is a promising approach to enhance the performance of peptide-based amyloid inhibitors.展开更多
基金financially supported by the National Key R&D Program of China(2019YFD0901903)the China Agriculture Research System of MOF and MARA(CARS-46,CARS-47)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010872)the Young S&T Talent Training Program of Guangdong Provincial Association for S&T,China(SKXRC202210)the Pearl River S&T Nova Program of Guangzhou(201906010081)the Central Public-interest Scientific Institution Basal Research Fund,CAFS(2020TD69).
文摘Fermented foods are a potential source to produce novel dipeptidyl peptidase-IV inhibitory peptides(D4IPs).In this study,the fermented mandarin fish(Chouguiyu)was used to screen D4IPs and their formation mechanism was studied by metagenomics and peptidomics.A total of 400 D4IPs with DPP-IV inhibition structure and high hydrophobicity were identified.The correlation network map showed that Lactococcus,Bacillus,Lysobacter,Pelagivirga,Kocuria,Escherichia,Streptococcus,and Peptostreptococcus were significantly correlated with the most D4IPs.Four stable D4IPs,including KAGARALTDAETAT,GEKVDFDDIQK,VVDADEMYLKGK,and GQKDSYVGDEAQ were respectively from the precursor proteins parvalbumin,troponin,myosin,and actin,and were mainly formed by the hydrolysis of subtilisin(EC 3.4.21.62),aspartic proteinase(EC 3.4.23.1),thermolysin(EC 3.4.24.27),oligopeptidase B(EC 3.4.21.83),and proteinase P1(EC 3.4.21.96)from Bacillus,Kocuria,Lysobacter,Lactococcus,and Peptostreptococcus.The inhibition mainly resulted from the hydrogen bond and salt bridge between D4IPs and DPP-IV enzyme.This study provides important information on the proteases and related microbial strains to directionally prepare D4IPs in Chouguiyu.
基金Supported by the National Research Foundation (OTKA) T30735 and T042589
文摘AIM: To assess the effect of our novel cell-permeable nuclear factor-kappaB (NF-κB) inhibitor peptide PN50 in an experimental model of acute pancreatitis. PN50 was produced by conjugating the cell-penetrating penetratin peptide with the nuclear localization signal of the NF-κB p50 subunit.METHODS: Pancreatitis was induced in male Wistar rats by administering 2×100 μg/kg body weight of cholecystokininoctapeptide (CCK) intraperitoneally (IP) at an interval of 1 h. PN50-treated animals received 1 mg/kg of PN50 IP 30 min before or after the CCK injections. The animals were sacrificed 4 h after the first injection of CCK.RESULTS: All the examined laboratory (the pancreatic weight/body weight ratio, serum amylase activity,pancreatic levels of TNF-α and IL-6, degree of lipid peroxidation, reduced glutathione levels, NF-κB binding activity, pancreatic and lung myeloperoxidase activity) and morphological parameters of the disease were improved before and after treatment with the PN50 peptide.According to the histological findings, PN50 protected the animals against acute pancreatitis by favoring the induction of apoptotic, as opposed to necrotic acinar cell death associated with severe acute pancreatitis.CONCLUSION: Our study implies that reversible inhibitors of stress-responsive transcription factors like NF-κB might be clinically useful for the suppression of the severity of acute pancreatitis.
基金supported by the Public Science and Technology Research Funds (Projects of Ocean)State Ocean Administration of P. R. China (Nos. 201305007 and 201405017)+3 种基金National High Technology Research and Development Program of China (No. 2013AA093003)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Jiangsu Qinglan ProjectJiangsu 333 Project
文摘The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-? converting enzyme(ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-Iinhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC_(50) of 5.75 μmol L^(-1). The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.
文摘The hydrolysis of velvet bean (Mucuna pruriens) protein in the presence of Alcalase?-Flavourzyme? and Pepsin-Pancreatin was investigated. The results showed that Alcalase?-Flavourzyme? (29.08%) sequential system catalyzed the hydrolysis most efficiently that Pepsin-Pancreatin (24.78%). In addition, the higher ACE-I inhibitory activity was achieved with the sequential system Alcalase?-Flavourzyme? (33.13%). Furthermore, the concentration of peptides employing an ultrafiltration (UF) system or their purification by gel filtration chromatography showed that the oligomeric peptides with lower molecular weight registered the highest ACE-I inhibitory activity. It has been demonstrated that Mucuna pruriens protein hydrolysates could serve as a source of peptides with ACE inhibitory activity and this activity can be attributed mainly to the mixture of short peptides in the hydrolysate.
基金supported by research grants to SL from NIH(1R21NS066114,1R01NS079432 and 1R01EY024575)Christopher&Dana Reeve Foundation(LA1-1002-2)Shriners Research Foundation(86300)
文摘The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to con- trol the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in con- ditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Im- portantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.
基金sponsored by the Outstanding Youth Project of Hunan Education Department(19B505)Changsha City Science and Technology Plan Project(kq2004113)+2 种基金the 2020 Natural Science Foundation of Hunan Province of China(2020JJ8061)the 2020 Science and Technology Innovation Project of Hunan Province of China(2020SK50921)the Undergraduate Inquiry Learning and Innovative Experimental Project of Hunan Education Department(2019[100]-1886)。
文摘In order to prepare angiotensin I-converting enzyme(ACE)inhibitory peptides,distilled spent grains of Chinese strong-flavor Baijiu were hydrolyzed by alcalase followed by papain under optimized conditions.A superior ACE inhibitory peptide was separated and purifi ed by ultrafi ltration and high-performance liquid chromatography(HPLC),and its amino acid sequence was further identified as Gln-Gly-Val-Pro(QGVP)by electrospray mass spectrometry(ESI-MS).QGVP formed 6 hydrogen bonds with the active site of ACE,which is responsible for reducingα-helix structure content of ACE causing subsequent inactivation.M oreover,it showed no significant cytotoxicity toward human umbilical vein endothelial cells(HUVECs),a nd signifi cantly i nduced phosphorylation of endothelial nitric oxide synthase(p-e NOS)and decreased endothelin 1(END1)expression in angiotensin I(Ang I)-treated HUVECs,demonstrating the potential antihypertensive effect.The peptide QGVP hydrolyzed from distilled spent grain proteins of Chinese strong-fl avor Baijiu was expected to be used as a food ingredient to prevent or co-treat hypertension with other chemical drugs.
基金supported by the National Key Research and Development Program of China (2021YFC2100800)the National Natural Science Foundation of China (22078238,21961132005,and 21908160)+1 种基金the Open Funding Project of the National Key Laboratory of Biochemical Engineeringthe Program of Introducing Talents of Discipline to Universities (BP0618007)。
文摘The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth investigation of repetitive motifs in various ice-binding proteins(IBPs)with evolution analysis.In this way,several peptides with notable antifreeze activity were developed.In particular,a designed antifreeze peptide named AVD exhibits ideal ice recrystallization inhibition(IRI),solubility,and biocompatibility,making it suitable for use as a cryoprotective agent(CPA).A mutation analysis and molecular dynamics(MD)simulations indicated that the Thr6 and Asn8 residues of the AVD peptide are fundamental to its ice-binding capacity,while the Ser18 residue can synergistically enhance their interaction with ice,revealing the antifreeze mechanism of AVD.Furthermore,to evaluate the cryoprotection potential of AVD,the peptide was successfully employed for the cryopreservation of various cells,which demonstrated significant post-freezing cell recovery.This work opens up a new avenue for designing antifreeze materials and provides peptide-based functional modules for synthetic biology.
文摘Amyloid-β (Aβ) protein aggregation is the main hallmark of Alzheimer's disease (AD). Inhibition of Aft fibrillation is thus a promising therapeutic approach to the prevention and treatment of AD. Recently, we designed a heptapeptide inhibitor, LVFFARK (LK7). LK7 shows a promising inhibitory capability on Aft fibrillation, but is prone to self-assembling and displays high cytotoxicity, which would hinder its practical application. Herein, we modified LK7 by a head-to-tail cyclization and obtained a cyclic LK7 (cLK7). cLK7 exhibits a different self-assembly behavior from LK7, and has higher stability against proteolysis than LK7 and little cytotoxicity to SH-SY5Y cells. Thermodynamic analysis revealed that both LK7 and cLK7 could bind to Aβ40 by electrostatic interactions, hydrogen bonding and hydrophobic interactions, but the binding affinity of cLK7 for Afl40 (KD = 4.96 μmol/L) is six times higher than that of LK7 (KD = 32.2 μmol/L). The strong binding enables cLK7 to stabilize the secondary structure of Aβ40 and potently inhibit its nucleation, fibrillation and cytotoxicity at extensive concentration range, whereas LK7 could only moderately inhibit Aβ40 fibrillation and cytotoxicity at low concentrations. The findings indicate that the peptide cyclization is a promising approach to enhance the performance of peptide-based amyloid inhibitors.