期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于DPSO-SA的低轨预警系统初始任务规划方法 被引量:3
1
作者 简平 邹鹏 熊伟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第10期1381-1386,共6页
为提高天基低轨预警系统在导弹跟踪任务中的效率,建立了天基低轨预警系统初始任务规划模型.该模型包含跟踪精度、任务完成率和资源松弛度等优化指标,考虑导弹跟踪中目标信息的不确定性,定义并构建了跟踪原子任务的不确定度和动态优先级... 为提高天基低轨预警系统在导弹跟踪任务中的效率,建立了天基低轨预警系统初始任务规划模型.该模型包含跟踪精度、任务完成率和资源松弛度等优化指标,考虑导弹跟踪中目标信息的不确定性,定义并构建了跟踪原子任务的不确定度和动态优先级.在此基础上,提出采用离散粒子群(DPSO,Discrete Particle Swarm Optimization)-模拟退火(SA,Simulated Annealing)混合优化算法求解初始任务规划模型,提高了算法收敛速度、精度以及全局搜索能力.仿真算例验证了模型的优点以及DPSO-SA混合优化算法的有效性. 展开更多
关键词 天基低轨预警系统 初始任务规划 动态优先级 离散粒子群 模拟退火
下载PDF
废水中和过程的RBF神经网络预测控制 被引量:6
2
作者 周洪煜 梁东义 周松杰 《控制工程》 CSCD 北大核心 2014年第1期79-83,共5页
废水中和过程有较强的非线性、时变性和滞后特性,对于过程模型的辨识与控制较为困难,采用常规的线性化模型或传统PID控制方法存在模型过于复杂,算法难以在线实施,控制精度不能保证等问题,很难取得满意的控制效果、针对该问题,应用酸碱... 废水中和过程有较强的非线性、时变性和滞后特性,对于过程模型的辨识与控制较为困难,采用常规的线性化模型或传统PID控制方法存在模型过于复杂,算法难以在线实施,控制精度不能保证等问题,很难取得满意的控制效果、针对该问题,应用酸碱中和的强酸当量模型,提出了一种基于敏感度(Sensitivity Analysis,SA)和动态粒子群优化算法(Dynamic Particle Swarm Optimization,DPSO)相结合的RBF神经网络模型辨识方法,通过调整网络结构和辨识出系统的滞后时间来提高模型辨识效率和预测精度,将RBF神经网络辨识器与神经网络控制器相结合构成电厂废水处理pH中和过程的预测控制系统。经过仿真研究和试验验证,与电厂实际应用的PID控制方法相比较,该方法能有效地对pH值进行控制,并实现较小的控制误差和节约药剂的效果。 展开更多
关键词 迟延系统 pH中和 SA—DPSO算法 模型辨识 预测控制 RBF神经网络
下载PDF
自适应变异的离散粒子群算法研究
3
作者 张元清 包骏杰 卫茜 《重庆三峡学院学报》 2007年第3期27-30,共4页
针对算法易早熟和收敛慢的缺点,提出了一种新的自适应变异离散粒子群算法。算法中的变异思想是一种确定性交异操作,能使算法中陷入局部极小区域的粒子通过变异行为进行全局寻优,从而克服算法易早熟的缺陷。
关键词 离散粒子群算法 自适应变异 TSP在问题
下载PDF
双层规划模型的大规模UCAV编队队形优化 被引量:4
4
作者 宗群 秦新立 +2 位作者 张博渊 田栢苓 赵欣怡 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2019年第3期15-22,共8页
为解决复杂约束环境下大规模无人战斗机(UCAV)编队队形优化问题,提出基于双层规划模型的队形优化求解算法.以大规模UCAV编队空对地饱和打击作战场景为例,建立UCAV编队作战上层规划模型,通过采用离散粒子群-模拟退火(DPSO-SA)算法进行求... 为解决复杂约束环境下大规模无人战斗机(UCAV)编队队形优化问题,提出基于双层规划模型的队形优化求解算法.以大规模UCAV编队空对地饱和打击作战场景为例,建立UCAV编队作战上层规划模型,通过采用离散粒子群-模拟退火(DPSO-SA)算法进行求解,得到执行每个任务的UCAV编号和最优队形;根据现有的编队作战队形库,建立编队中UCAV站位下层规划模型,通过采用遗传算法进行求解,得到UCAV在队形中的位置.仿真结果表明:在上层规划模型中引入改进模拟退火算法,可以解决离散粒子群算法易陷入局部极小值的问题;设计双层规划模型,可以解决DPSO-SA算法后期收敛速度慢的问题.相对于单层规划模型,双层规划模型求解大规模UCAV编队队形优化问题收敛速度更快,寻优效果更好. 展开更多
关键词 大规模无人战斗机 双层规划模型 编队队形优化 离散粒子群-模拟退火 改进模拟退火
下载PDF
多载波DS/CDMA系统中基于SADPSO算法的多用户检测
5
作者 李晓东 黄石 《甘肃科学学报》 2007年第3期91-95,共5页
离散粒子群算法(DPSO)是一种简单有效的随机全局优化技术.它通过粒子间的合作与竞争以实现对多维复杂空间的高效搜索.为改进其收敛速度和克服"早熟收敛"问题,将模拟退火机制引入到基本DPSO算法中,提出了SADPSO算法.并将该算... 离散粒子群算法(DPSO)是一种简单有效的随机全局优化技术.它通过粒子间的合作与竞争以实现对多维复杂空间的高效搜索.为改进其收敛速度和克服"早熟收敛"问题,将模拟退火机制引入到基本DPSO算法中,提出了SADPSO算法.并将该算法应用到多载波DS/CDMA系统的多用户检测中.仿真结果表明,该检测器在误码率性能和抗"远近"效应能力方面取得到了比较满意的结果,收敛速度和精度均好于基于DPSO算法的检测器,在相同带宽相同检测算法的条件下多载波DS/CDMA系统误码率性能优于DS/CDMA系统. 展开更多
关键词 多用户检测 多载波直扩码分多址 离散粒子群算法 模拟退火
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部