Distributed radio access network (DRAN) is a novel wireless access architecture and can solve the problem of the available spectrum scarcity in wireless communications. In this paper, we investigate resource allocatio...Distributed radio access network (DRAN) is a novel wireless access architecture and can solve the problem of the available spectrum scarcity in wireless communications. In this paper, we investigate resource allocation for the downlink of OFDMA DRAN. Unlike previous exclusive criterion based algorithms that allocate each subcarrier to only one user in the system, the proposed algorithms are based on shared criterion that allow each subcarrier to be allocated to multiple users through different antennas and to only one user through same antenna. First, an adaptive resource allocation algorithm based on shared criterion is proposed to maximize total system rate under each user's minimal rate and each antenna's maximal power constraints. Then we improve the above algorithm by considering the influence of the resource allocation scheme on single user. The simulation results show that the shared criterion based algorithm provide much higher total system rate than that of the exclusive criterion based algorithm at the expense of the outage performance and the fairness, while the improved algorithm based on shared criterion can achieve a good tradeoff performance.展开更多
文摘Distributed radio access network (DRAN) is a novel wireless access architecture and can solve the problem of the available spectrum scarcity in wireless communications. In this paper, we investigate resource allocation for the downlink of OFDMA DRAN. Unlike previous exclusive criterion based algorithms that allocate each subcarrier to only one user in the system, the proposed algorithms are based on shared criterion that allow each subcarrier to be allocated to multiple users through different antennas and to only one user through same antenna. First, an adaptive resource allocation algorithm based on shared criterion is proposed to maximize total system rate under each user's minimal rate and each antenna's maximal power constraints. Then we improve the above algorithm by considering the influence of the resource allocation scheme on single user. The simulation results show that the shared criterion based algorithm provide much higher total system rate than that of the exclusive criterion based algorithm at the expense of the outage performance and the fairness, while the improved algorithm based on shared criterion can achieve a good tradeoff performance.