CBF/DREB1(C-repeat binding factor/dehydration resistance element binding protein 1)是一类抗逆相关的转录因子,它们的表达可以激活下游一系列抗逆应答基因的表达,从而提高植株的抗逆性。沙冬青(Ammopiptanthus mongolicus)主要生...CBF/DREB1(C-repeat binding factor/dehydration resistance element binding protein 1)是一类抗逆相关的转录因子,它们的表达可以激活下游一系列抗逆应答基因的表达,从而提高植株的抗逆性。沙冬青(Ammopiptanthus mongolicus)主要生长在中国西北荒漠和半荒漠地带,是典型的旱生资源植物,具有突出的抗寒、抗旱、耐盐碱特性。本文以沙冬青为实验材料,利用RT-PCR和RACE技术克隆了沙冬青CBF/DREB1基因cDNA序列,并对其进行了序列分析。结果表明:沙冬青CBF/DREB1转录因子基因序列全长为991bp,包括624bp的开放阅读框(ORF),起始密码子ATG,终止密码子TAA,114bp的5'UTR和253bp的3'UTR,以及加尾信号AATAAA及poly(A)11。生物信息学预测其演绎的氨基酸序列具有AP2结构域,且AP2结构域的两端拥有CBF家族特有的PKK/RPAGRxKFxETRHP和DSAWR两段短多肽序列,属于CBF家族。沙冬青CBF/DREB1转录因子的克隆为进一步研究植物抗逆和获得抗性基因提供了新的候选基因,也为进一步从分子水平上验证其功能,深入理解植物适应干旱、低温和高盐机制奠定基础。展开更多
The transcription factors DREB1s/CBFs play important roles in the regulation of plant resistance to environmental stresses and are quite useful for generating transgenic plants tolerant to these stresses. In the prese...The transcription factors DREB1s/CBFs play important roles in the regulation of plant resistance to environmental stresses and are quite useful for generating transgenic plants tolerant to these stresses. In the present work, a cDNA encoding DREB1/CBF-like protein (GhDREB1L) from cotton was isolated, and its sequence features, DNA binding preference, and expression patterns of the transcripts were also characterized. GhDREB1L contained one conserved AP2/ERF domain and its amino acid sequence was similar to the DREB1/CBF group of the DREB family from other plants. The DNA-binding domain of GhDREB1L was successfully expressed as a fusion protein in Escherichia coli BL21 (DE3) and purified by Ni-NTA affinity chromatography. Electrophoretic mobility shift assay revealed that the purified GhDREB1L fusion protein had a specific binding activity with the previously characterized DRE ele-ment (core sequence, ACCGAC) and also with the DRE-like sequence (core sequence, GCCGAC) in the promoter of the dehydration-responsive late embryogenesis-abundant gene LEA D113. Semi-quantita- tive RT-PCR showed that GhDREB1L was induced in the cotton cotyledons by low temperature, as well as drought and NaCl treatments. These results suggested that the novel cotton GhDREB1L might play an important role in response to low temperature as well as drought and high salinity through binding to the DRE cis-element.展开更多
Nine CBF/DREB1 homologous genes in rice were obtained by BLAST search in the NCBI database, which share conserved amino acid sequences with DREB1 protein in Arabidopsis. Three CBF genes organized in tandem, named OsCB...Nine CBF/DREB1 homologous genes in rice were obtained by BLAST search in the NCBI database, which share conserved amino acid sequences with DREB1 protein in Arabidopsis. Three CBF genes organized in tandem, named OsCBF1, OsCBF2 and OsCBF3, showed a transient induction in the process of cold acclimation, much stronger in indica rice 93-11 compared with japonica rice Nipponbare. The candidate downstream genes OsLIP5 and OsLIP9 were induced in 93-11 but not in Nipponbare. The differential expression of CBF regulon might be caused by polymorphisms within promoter sequences between these two rice varieties. These results could be useful for utilization of CBF/DREB1 genes and illustration of differences in chilling tolerance between indica and japonica rice varieties.展开更多
Two homologous genes of the Arabidopsis C-repeat/dehydration-responsive element binding factors (CBF/ DREB1) transcriptional activator were isolated by RT-PCR from Chinese cabbage (Brassica pekinensis Rupr. cv. Qin...Two homologous genes of the Arabidopsis C-repeat/dehydration-responsive element binding factors (CBF/ DREB1) transcriptional activator were isolated by RT-PCR from Chinese cabbage (Brassica pekinensis Rupr. cv. Qinbai 5) and were designated as BcCBF1 and BcCBF2. Each encodes a putative CBF/DREB1 protein with an AP2 (Apetal2) DNA-bindlng domain, a putative nuclear localization signal, and a possible acidic activation domain. Deduced amino acid sequences show that BcCBF1 is very similar to the Arabidopsis CBF1, whereas BcCBF2 Is different in that it contains two extra regions of 24 and 20 amino acids in the acidic domain. The mRNA accumulation profiles indicated that the expression of BcCBF1 and BcCBF2 is strongly induced by cold treatment, but does not respond similarly to dehydration or abscisic acid (ABA) treatment. However, the cold-induced accumulation of BcCBF2 mRNA was rapid but short-lived compared with that of BcCBFI. The mRNA levels of both BcCBF1 and BcCBF2 were higher in leaves than in roots when plants were exposed to cold, whereas, salt stress caused higher accumulation of BcCBF2 mRNA in roots than in leaves, suggesting that the organ specificity of the gene expression of the BcCBFs is probably stress dependent. In addition, the accumulation of BcCBF1 and BcCBF2 mRNAs was greatly enhanced by light compared with darkness when seedlings were exposed to cold. It is concluded that the two BcCBF proteins may be involved in the process of plant response to cold stress through an ABA-independent pathway and that there is also a cross-talk between the light signaling conduction pathway and the cold response pathway in B. pekinensis as in Arabidopsis.展开更多
文摘CBF/DREB1(C-repeat binding factor/dehydration resistance element binding protein 1)是一类抗逆相关的转录因子,它们的表达可以激活下游一系列抗逆应答基因的表达,从而提高植株的抗逆性。沙冬青(Ammopiptanthus mongolicus)主要生长在中国西北荒漠和半荒漠地带,是典型的旱生资源植物,具有突出的抗寒、抗旱、耐盐碱特性。本文以沙冬青为实验材料,利用RT-PCR和RACE技术克隆了沙冬青CBF/DREB1基因cDNA序列,并对其进行了序列分析。结果表明:沙冬青CBF/DREB1转录因子基因序列全长为991bp,包括624bp的开放阅读框(ORF),起始密码子ATG,终止密码子TAA,114bp的5'UTR和253bp的3'UTR,以及加尾信号AATAAA及poly(A)11。生物信息学预测其演绎的氨基酸序列具有AP2结构域,且AP2结构域的两端拥有CBF家族特有的PKK/RPAGRxKFxETRHP和DSAWR两段短多肽序列,属于CBF家族。沙冬青CBF/DREB1转录因子的克隆为进一步研究植物抗逆和获得抗性基因提供了新的候选基因,也为进一步从分子水平上验证其功能,深入理解植物适应干旱、低温和高盐机制奠定基础。
基金the State Key Basic Research and Development Plan of China (Grant No. 2004CB117303),the Hi-Tech Research and Development Program of China (Grant Nos.2004AA222100, 2002AA212051 and 2002AA207006),the National Natural Science Foundation of China (Grant Nos. 30170080 and 39770078)
文摘The transcription factors DREB1s/CBFs play important roles in the regulation of plant resistance to environmental stresses and are quite useful for generating transgenic plants tolerant to these stresses. In the present work, a cDNA encoding DREB1/CBF-like protein (GhDREB1L) from cotton was isolated, and its sequence features, DNA binding preference, and expression patterns of the transcripts were also characterized. GhDREB1L contained one conserved AP2/ERF domain and its amino acid sequence was similar to the DREB1/CBF group of the DREB family from other plants. The DNA-binding domain of GhDREB1L was successfully expressed as a fusion protein in Escherichia coli BL21 (DE3) and purified by Ni-NTA affinity chromatography. Electrophoretic mobility shift assay revealed that the purified GhDREB1L fusion protein had a specific binding activity with the previously characterized DRE ele-ment (core sequence, ACCGAC) and also with the DRE-like sequence (core sequence, GCCGAC) in the promoter of the dehydration-responsive late embryogenesis-abundant gene LEA D113. Semi-quantita- tive RT-PCR showed that GhDREB1L was induced in the cotton cotyledons by low temperature, as well as drought and NaCl treatments. These results suggested that the novel cotton GhDREB1L might play an important role in response to low temperature as well as drought and high salinity through binding to the DRE cis-element.
基金supported by the Key Project of the National Twelve-Five Year Research Program of China(Grant No.2012BAD20B05-01-1)the Projects from the National Rice Industrial Technology System(Grant No.nycytx-001)the Grant Special Foundation of Transgenic Plants in China(Grant No.2009ZX08001-009B)
文摘Nine CBF/DREB1 homologous genes in rice were obtained by BLAST search in the NCBI database, which share conserved amino acid sequences with DREB1 protein in Arabidopsis. Three CBF genes organized in tandem, named OsCBF1, OsCBF2 and OsCBF3, showed a transient induction in the process of cold acclimation, much stronger in indica rice 93-11 compared with japonica rice Nipponbare. The candidate downstream genes OsLIP5 and OsLIP9 were induced in 93-11 but not in Nipponbare. The differential expression of CBF regulon might be caused by polymorphisms within promoter sequences between these two rice varieties. These results could be useful for utilization of CBF/DREB1 genes and illustration of differences in chilling tolerance between indica and japonica rice varieties.
基金Supported by the National Natural Science Foundation of China (30470277), Gansu Key Technologies R & D Program (GS022-A41-045), Gansu Provincial Natural Science Foundation of China (ZS031-A25-039-D) and Gansu Agricultural Bio-technology R & D Project.
文摘Two homologous genes of the Arabidopsis C-repeat/dehydration-responsive element binding factors (CBF/ DREB1) transcriptional activator were isolated by RT-PCR from Chinese cabbage (Brassica pekinensis Rupr. cv. Qinbai 5) and were designated as BcCBF1 and BcCBF2. Each encodes a putative CBF/DREB1 protein with an AP2 (Apetal2) DNA-bindlng domain, a putative nuclear localization signal, and a possible acidic activation domain. Deduced amino acid sequences show that BcCBF1 is very similar to the Arabidopsis CBF1, whereas BcCBF2 Is different in that it contains two extra regions of 24 and 20 amino acids in the acidic domain. The mRNA accumulation profiles indicated that the expression of BcCBF1 and BcCBF2 is strongly induced by cold treatment, but does not respond similarly to dehydration or abscisic acid (ABA) treatment. However, the cold-induced accumulation of BcCBF2 mRNA was rapid but short-lived compared with that of BcCBFI. The mRNA levels of both BcCBF1 and BcCBF2 were higher in leaves than in roots when plants were exposed to cold, whereas, salt stress caused higher accumulation of BcCBF2 mRNA in roots than in leaves, suggesting that the organ specificity of the gene expression of the BcCBFs is probably stress dependent. In addition, the accumulation of BcCBF1 and BcCBF2 mRNAs was greatly enhanced by light compared with darkness when seedlings were exposed to cold. It is concluded that the two BcCBF proteins may be involved in the process of plant response to cold stress through an ABA-independent pathway and that there is also a cross-talk between the light signaling conduction pathway and the cold response pathway in B. pekinensis as in Arabidopsis.