XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain ...XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain takes place during the adsorption of propylene through breaking C -C double bond and C-C bond on Mo2+ and the adjacent lattice oxygen, leading to formation of the oxygen- or nitrogen-containing by-products of C1 and C2 species. Diffuse-Reflection Fourier Transform Infrared (DRFTIR) Spectroscopy was used to study the surface species formed during the chemisorption and reaction of propylene over y-Bi2MoO6 at a lower temperature. The results that C1, C2 adspecies were detected by DRFTIR at 175℃ are consistent with the results of XPS and chemical trapping experiments, whlle the results at 50℃ Grasselli et al.展开更多
基金Supported by the National Natural Science Fundation of China.
文摘XPS and chemical trapping experments with H2, NH3, and CH3I as trapping agents were carried out for studying the adsorption of propylene over MoO3 or r-Bi2MoO6. The results show that the fragmentation of carbon chain takes place during the adsorption of propylene through breaking C -C double bond and C-C bond on Mo2+ and the adjacent lattice oxygen, leading to formation of the oxygen- or nitrogen-containing by-products of C1 and C2 species. Diffuse-Reflection Fourier Transform Infrared (DRFTIR) Spectroscopy was used to study the surface species formed during the chemisorption and reaction of propylene over y-Bi2MoO6 at a lower temperature. The results that C1, C2 adspecies were detected by DRFTIR at 175℃ are consistent with the results of XPS and chemical trapping experiments, whlle the results at 50℃ Grasselli et al.