期刊文献+
共找到604篇文章
< 1 2 31 >
每页显示 20 50 100
Production of Reduced Iron Powder Using Ultra-Fine Iron Concentrate 被引量:1
1
作者 朱瀛波 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第3期97-98,共2页
The using of the iron to extract reduced iron with T Fe ≥ 69.5% Al 2O 3+SiO 2<0.3% was studied. Preparation of reduced iron powder in this experimental research can produce ultra pure magnetite concentrate... The using of the iron to extract reduced iron with T Fe ≥ 69.5% Al 2O 3+SiO 2<0.3% was studied. Preparation of reduced iron powder in this experimental research can produce ultra pure magnetite concentrate. The quality of the final product reaches the product standard of SC 100.26 and NC 100.24. 展开更多
关键词 ultra pure iron powder reduced iron powder SEPARATION
下载PDF
Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil 被引量:11
2
作者 WANG Xinjun CHEN Xueping +2 位作者 YANG Jing WANG Zhaosu SUN Guoxin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第11期1562-1568,共7页
The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first t... The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first time to report the impact of microbial iron plaque reduction on As mobility. Iron reduction occurred during the inoculation of iron reducing enrichment culture in the treatments with iron plaque and ferrihydrite as the electron acceptors, respectively. The Fe(II) concentration with the treatment of anthraquinone-2, 6-disulfonic acid (AQDS) and iron reducing bacteria increased much faster than the control. Arsenic released from iron plaque with the iron reduction, and a significant correlation between Fe(II) and total As in culture was observed. However, compared with control, the increasing rate of As was inhibited by iron reducing bacteria especially in the presence of AQDS. In addition, the concentrations of As(III) and As(V) in abiotic treatments were higher than those in the biotic treatments at day 30. These results indicated that both microbial and chemical reductions of iron plaque caused As release from iron plaque to aqueous phase, however, microbial iron reduction induced the formation of more crystalline iron minerals, leading to As sequestration. In addition, the presence of AQDS in solution can accelerate the iron reduction, the As release from iron plaque and subsequently the As retention in the crystalline iron mineral. Thus, our results suggested that it is possible to remediate As contaminated soils by utilizing iron reducing bacteria and AQDS. 展开更多
关键词 iron reducing bacteria iron plaque ARSENIC anthraquinone-2 6-disulfonic acid (AQDS) paddy soil FERRIHYDRITE
下载PDF
Aromatic compound degradation by iron reducing bacteria isolated from irrigated tropical paddy soils 被引量:6
3
作者 W.Reichardt 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第12期1487-1493,共7页
Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined fo... Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation.All the isolates were iron reducers,but only 56.5%could couple iron reduction to phenol and/or benzoate degradation,as evidenced by depletion of phenol and benzoate after one week incubation.Analysis of degradative capability using Biolog... 展开更多
关键词 aromatic compounds DEGRADATION iron reducing bacteria paddy soil
下载PDF
Treatment of simulated wastewater from in situ leaching uranium mining by zerovalent iron and sulfate reducing bacteria 被引量:3
4
作者 易正戟 连宾 +1 位作者 杨颖群 邹建陵 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期840-844,共5页
Batch and column experiments were conducted to determine whether zerovalent iron (ZVI) and sulfate reducing bacteria (SRB) can function synergistically and accelerate pollutant removal. Batch experiments suggest that ... Batch and column experiments were conducted to determine whether zerovalent iron (ZVI) and sulfate reducing bacteria (SRB) can function synergistically and accelerate pollutant removal. Batch experiments suggest that combining ZVI with SRB can enhance the removal of U(Ⅵ) synergistically. The removal rate of U(Ⅵ) in the ZVI+SRB combining system is obviously higher than the total rate of ZVI system and SRB system with a difference of 13.4% at t=2 h and 29.9% at t=4 h. Column experiments indicate that the reactor filled with both ZVI and SRB biofilms is of better performance than the SRB bioreactor in wastewater basification, desulfurization and U(Ⅵ) fixation. The results imply that the ZVI+SRB permeable reactive barrier may be a promising method for treating subsurface uranium contamination. 展开更多
关键词 zerovalent iron (ZVI) SULFATE reducing bacteria (SRB) URANIUM SULFATE WASTEWATER BASIFICATION
下载PDF
The Dynamic Experiment on Treating Acid Mine Drainage with Iron Scrap and Sulfate Reducing Bacteria Using Biomass Materials as Carbon Source 被引量:2
5
作者 Xianjun Wang Junzhen Di +7 位作者 Yanrong Dong Yu Yang Bing Liang Fankang Meng Tingting Wang Wenbo An Zengxin Li Jianzhi Guo 《Journal of Renewable Materials》 SCIE EI 2021年第1期163-177,共15页
The study is aimed at the problem of high content of Cr^(6+),Cr^(3+)and SO_(4)^(2-)is high and low pH value in acid mine drainage(AMD).Moreover,treatment of AMD by sulfate reducing bacteria(SRB)requires the addition o... The study is aimed at the problem of high content of Cr^(6+),Cr^(3+)and SO_(4)^(2-)is high and low pH value in acid mine drainage(AMD).Moreover,treatment of AMD by sulfate reducing bacteria(SRB)requires the addition of carbon source,while the treating effectiveness is not good enough on its own.The sugarcane slag,the corn cob and the sunflower straw were selected as the SRB carbon source cooperating with iron scrap to construct the dynamic columns 1,2 and 3.The mechanism of removing Cr^(6+),Cr^(3+),SO_(4)^(2-)and H+and the regularity of sustained release of carbon source and TFe release was studied in AMD.The removal efficiency of heavy metal ions,the ability of sustained release of carbon source,and the ability of adjusting acid by the three dynamic columns were compared.The result shows that the average removal rates of Cr^(6+),Cr^(3+)and SO_(4)^(2-)in effluent of dynamic column 1,filled by sugarcane slag,iron scrap and SRB,were 96.9%,67.1%and 54.3%.The average release of TFe and chemical oxygen demand(COD)were 4.4 and 287.3 mg/L.Its average pH was 6.98.Compared with the performance of dynamic columns 1,2 and 3,dynamic column 1 performed best in removing Cr^(6+),Cr^(3+)and SO_(4)^(2-)from AMD and controlling the release of COD and TFe,adjusting the pH of the solution.The study is of significance in treatment of AMD by taking for biomass materials as SRB carbon source in cooperation with iron scrap. 展开更多
关键词 Biomass material sulfate reducing bacteria acid mine drainage iron scrap
下载PDF
Characterization and technology of fast reducing roasting for fine iron materials 被引量:14
6
作者 罗立群 黄红 余永富 《Journal of Central South University》 SCIE EI CAS 2012年第8期2272-2278,共7页
The features of the techniques of fast reducing roasting (FRR) and conventional magnetic roasting, as well as tremendous demands of iron ores in iron and steel industry of China, were briefly described. The test equip... The features of the techniques of fast reducing roasting (FRR) and conventional magnetic roasting, as well as tremendous demands of iron ores in iron and steel industry of China, were briefly described. The test equipment suitable for FRR of fine-grained materials was introduced. Weakly magnetic materials with grain size of <0.30 mm were converted into strongly magnetic materials by FRR for several to dozens of seconds. In a weakly reducing atmosphere and at 740-800 °C, refractory powder iron material (<0.30 mm) which is rich in specularite, limonite and Mg-Mn siderite was subjected to FRR for a few seconds to 60 s. Concentrate with iron grade of 55.67%-55.21%, high contents of Mg and Mn in the ore is obtained and the yield of magnetic separation reaches 81.66%-86.57%. The results of X-ray diffraction (XRD) analysis and magnetism detection of the material before and after FRR indicate that weakly magnetic material is mainly converted into strongly magnetic material Fe3O4 with specific saturation magnetic moment. The efficiency of FRR is consistent with TFe recovery of magnetic separation; meantime, the specific saturation magnetic moment increases from 33 to 42 times after FRR. Calculations show that speeds of flash magnetic roasting are obtained from several dozen to two or three hundred times, compared with rotary kiln or shaft furnace. This indicates that it is practicable to use the fast reducing roasting technique to improve the comprehensive utilization of iron ore resources. 展开更多
关键词 强磁性材料 铁矿石资源 焙烧技术 还原焙烧 特性 磁化焙烧 FRR X射线衍射
下载PDF
Dynamics and Activity of Iron-Reducing Bacterial Populations in a West African Rice Paddy Soil under Subsurface Drainage: Case Study of Kamboinse in Burkina Faso 被引量:2
7
作者 Cécile Harmonie Otoidobiga Amadou Keita +2 位作者 Hamma Yacouba Alfred S. Traore Dayéri Dianou 《Agricultural Sciences》 2015年第8期860-869,共10页
Iron toxicity is one of the main edaphic constraints that hamper rice production in West African savanna and forest lowlands. Although chemical reduction processes of various types of pedogenic iron oxides could not b... Iron toxicity is one of the main edaphic constraints that hamper rice production in West African savanna and forest lowlands. Although chemical reduction processes of various types of pedogenic iron oxides could not be underestimated, the bulk of these processes can be ascribed to the specific activity of Iron-Reducing Bacteria (IRB). The reducing conditions of waterlogged lowland soils boost iron toxicity through the reduction of almost all iron into ferrous form (Fe2+), which can cause disorder in rice plant and crop yield losses. Aiming to contribute at the improvement of rice yield in Africa, an experiment was developed to evaluate the impact of subsurface drainage on IRB dynamics and activity during rice cultivation. Twelve concrete microplots with a clay-loam soil and a rice variety susceptible to iron toxicity (FKR 19) were used for the experiment. Soil in microplots was drained for 7 days (P1), 14 days (P2), and 21 days (P3), respectively. Control (T) microplots without drainage were prepared similarly. The evolution of IRB populations and the content of ferrous iron in the paddy soil and in soil near rice root were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. Data obtained were analyzed in relation to drainage frequency, rice growth stage, and rice yield using the Student t test and XLSTAT 7.5.2 statistical software. From the results obtained, the subsurface drainage reduced significantly IRB populations (p = 0.024). However, the drainage did not affect significantly ferrous iron concentration in the soil near rice roots (p = 0.708). The concentration of ferrous iron (p < 0.0001) in soil near rice roots and the number of IRB (p < 0.0001) were significantly higher during the rice tillering and maturity stages. Although no significant difference was observed for rice yield among treatments (p = 0.209), the P2 subsurface drainage showed the highest yield and the lowest concentration of ferrous iron in soil near rice roots. 展开更多
关键词 iron-reducing Bacteria RICE iron Toxicity SUBSURFACE Drainage
下载PDF
Synergistic effect of combining sulfate reducing bacteria and zerovalent iron permeable reactive barriers on the treatment of groundwater rich in uranium, sulfate and heavy metals 被引量:1
8
作者 Zhengji YI Kaixuan TAN +2 位作者 Zhenxun YU Aili TAN Shiqiang WANG 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期125-126,共2页
关键词 硫酸盐 细菌 重金属 地下水 水文化学
下载PDF
Utilization of waste polyethylene terephthalate as a reducing agent in the reduction of iron ore composite pellets
9
作者 Gkhan Polat Burak Birol Muhlis Nezihi Saridede 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第8期748-754,共7页
The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies ha... The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450℃ for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450℃ for 10 min using composite pellets containing 60% PET and 40% coke. 展开更多
关键词 polyethylene terephthalate (PET) waste recycling reducing agents iron ore pellets ore reduction
下载PDF
Numerical Analysis of Blast Furnace Performance Under Charging Iron-Bearing Burdens With High Reducibility 被引量:1
10
作者 CHU Man-sheng GUO Xian-zhen +2 位作者 SHEN Feng-man YAGI Jun-ichiro NOGAMI Hiroshi 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2007年第2期13-19,共7页
The reducibility of iron-bearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluate... The reducibility of iron-bearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluated using a multi-fluid blast furnace model. The effects of reaction rate constants and diffusion coefficients were investigated separately or simultaneously for clarifying the variations of furnace state. According to the model simulation results, in the upper zone, the indirect reduction of the burdens proceeds at a faster rate and the shaft efficiency is enhanced with the improvement under the conditions of interface reaction and intra-particle diffusion. In the lower zone, direct reduction in molten slag is restrained. As a consequence, CO utilization of top gas is enhanced and the ratio of direct reduction is decreased. It is possible to achieve higher energy efficiency of the blast furnace, and this is represented by the improvement in productivity and the decrease in consumption of reducing agent. The use of high-reducibility burdens contributes to a better performance of blast furnace. More efforts are necessary to develop and apply highreducibility sinter and carbon composite agglomerates for practical application at a blast furnace. 展开更多
关键词 blast furnace iron-bearing burden reducIBILITY multi-fluid model 3-interface shrinking core model
下载PDF
Present situation and development of saving energy and reducing emission technology in iron ore sintering process
11
作者 ZHU Deqing,CHUN Tiejun and PAN Jian School of Minerals Processing and Bioengineering,Central South University,Changsha 410083,Hunan,China 《Baosteel Technical Research》 CAS 2010年第S1期3-,共1页
The energy consumption of iron ore sintering process is about 10%- 15%of the total of iron and steel industry.Therefore,it is of great significance to take effective measures to reduce the energy consumption in the ir... The energy consumption of iron ore sintering process is about 10%- 15%of the total of iron and steel industry.Therefore,it is of great significance to take effective measures to reduce the energy consumption in the iron ore sintering process to reduce the costs of sintering product and cut down the emissions of harmful gases,such as CO_2 and SO_2.In this study,the technology development of saving energy and reducing emission in iron ore sintering process was reviewed and discussed;some new directions and measures of saving energy were presented for the sintering process in the future. 展开更多
关键词 iron ore sintering saving energy reducing emission measures
下载PDF
Effect of Combined Application of Subsurface Drainage and Mineral Fertilization on Iron-Reducing Bacterial Populations’ Developments and Fe2+ Uptake by Two Rice Varieties in an Iron Toxic Paddy Soil of Burkina Faso (West Africa)
12
作者 Cécile Harmonie Otoidobiga Honoré Kam +10 位作者 Adama Bagayogo Aboubacar Savadogo Joseph B. Sawadogo Sayouba Sawadogo Adama Sawadogo Yapi Sinaré Ibrahima Ouédraogo Prosper Zombré Susumu Asakawa Alfred S. Traoré Dayéri Dianou 《Agricultural Sciences》 2016年第11期783-804,共23页
Rice is one of the staple crops in Burkina Faso. However, the local production covers only 47% of the population demands. One of the main reasons of the poor productivity in Burkina Faso is iron toxicity which is rela... Rice is one of the staple crops in Burkina Faso. However, the local production covers only 47% of the population demands. One of the main reasons of the poor productivity in Burkina Faso is iron toxicity which is related mainly to the activity of Iron Reducing Bacteria in the rice field’s ecosystems. In order to control the harmful effects of Iron Reducing Bacterial populations and to improve rice productivity, a pots experiment was conducted at the experimental site of the University Ouaga I Pr. Joseph KI-ZERBO. An iron toxic soil from Kou Valley (West of Burkina Faso) and two rice varieties, BOUAKE-189 and ROK-5, sensitive and tolerant to iron toxicity, respectively, were used for the experiment. The pots were drained for 14 days (D2) and amended with chemical fertilizers (NPK + Urea and NPK + Urea + Ca + Mg + Zn complexes). Control pots without drainage and fertilization (D0/NF) were prepared similarly. The kinetics of Iron Reducing Bacterial populations and ferrous iron content in soil near rice roots were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. The total iron content was evaluated in rice plant using a spectrometric method. Data obtained were analyzed in relation to drainage and fertilization mode, rice growth stage and rice yield using the Student’s t-test and XLSTAT 2014 statistical software. The experiment showed that the combined application of subsurface drainage and NPK + Urea + Ca + Mg + Zn fertilization, reduced significantly the number of IRB in the soil near rice roots for both rice varieties (p = 0.050 and p = 0.020) increased the leaf tissue tolerance to excess amounts of Fe, and rice yield. 展开更多
关键词 iron reducing Bacteria Rice Variety iron Uptake Subsurface Drainage FERTILIZATION
下载PDF
Corrosion and Electrochemical Behavior of 316L Stainless Steel in Sulfate-reducing and Iron-oxidizing Bacteria Solutions
13
作者 胥聪敏 张耀亨 +1 位作者 程光旭 朱文胜 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第6X期829-834,共6页
Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria IOB and anaerobic sulfate-reducing bacteria SRB isolated from cooling water systems in... Corrosion and electrochemical behavior of 316L stainless steel was investigated in the presence of aerobic iron-oxidizing bacteria IOB and anaerobic sulfate-reducing bacteria SRB isolated from cooling water systems in an oil refinery using electrochemical measurement, scanning electron microscopy SEM and energy dispersive atom X-ray analysisEDAX. The results show the corrosion potential and pitting potential of 316L stainless steel decrease distinctly in the presence of bacteria, in comparison with those observed in sterile medium under the same exposure time. SEM morphologies have shown that 316L stainless steel reveals no signs of pitting attack in the sterile medium. However, micrometer-scale corrosion pits were observed on 316L stainless steel sur- face in the presence of bacteria. The presence of SRB leads to higher corrosion rates than IOB. The interactions between the stainless steel surface, abiotic corrosion products, and bacterial cells and their metabolic products in- creased the corrosion damage degree of the passive film and accelerated pitting propagation. 展开更多
关键词 sulfate-reducing BACTERIA SRB iron-oxidizing BACTERIA IOB 316L STAINLESS steel PITTING CORROSION ele
下载PDF
Effect of Fertilization on the Dynamics and Activity of Iron-Reducing Bacterial Populations in a West African Rice Paddy Soil Planted with Two Rice Varieties: Case Study of Kou Valley in Burkina Faso
14
作者 cile Harmonie Otoidobiga +10 位作者 Adama Sawadogo Yapi Sinarè Ibrahima Ouè draogo Prosper Zombrè Susumu Asakawa Alfred S. Traore Dayè ri Dianou 《Journal of Environmental Protection》 2016年第8期1119-1131,共13页
Iron toxicity is a major stress to rice caused by a high concentration of reduced iron, in the soil in many lowlands worldwide. To reduce iron toxicity in the West African lowlands, an investigation was performed at t... Iron toxicity is a major stress to rice caused by a high concentration of reduced iron, in the soil in many lowlands worldwide. To reduce iron toxicity in the West African lowlands, an investigation was performed at the site of the University of Ouagadougou, in pots containing an iron toxic soil from the Kou Valley (West of Burkina Faso). The experiment objective was to study the effect of mineral fertilizer on Iron Reducing Bacteria (IRB) dynamics and activity during rice cultivation, iron accumulation in rice plant and rice biomass yield under iron toxicity conditions. BOUAKE-189 and ROK-5 rice varieties, sensitive and tolerant to iron toxicity, respectively, were used for the experiment. The pots were amended with chemical fertilizers (NPK + Urea and NPK + Urea + Ca + Mg + Zn complex). Control pots without fertilization were prepared similarly. The kinetics of IRB and ferrous iron content in soil near rice roots were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. The total iron content was evaluated in rice plant using spectrometric method. Data obtained were analyzed in relation to fertilization mode, rice growth stage and rice yield using the student’s t-test and XLSTAT 2014 statistical software. The experiment revealed that NPK + Urea and NPK + Urea + Ca + Mg + Zn fertilization, decreased significantly (p < 0.0001) the number of IRB in the soil for BOUAKE-189 rice varieties. In most pots, highest IRB densities and ferrous iron content in soil were recorded from rice tillering and flowering to maturity stages, indicating that rice plants promoted microbial processes and iron reduction in soil. From the study, the NPK + Urea amendment decreased significantly ferrous iron content (p < 0.0001) in soil near BOUAKE-189 and ROK-5 rice varieties roots relatively to control pots. However, NPK + Urea + Ca + Zn + Mg amendment increased significantly ferrous iron content (p < 0.0001) in the soil near roots, Fe accumulation in plant biomass and rice yield for the two rice varieties. 展开更多
关键词 iron-reducing Bacteria RICE iron Toxicity FERTILIZATION
下载PDF
Dynamics of Phenol Degrading-Iron Reducing Bacteria in Intensive Rice Cropping System
15
作者 LUWENJING W.REICHARDT 《Pedosphere》 SCIE CAS CSCD 2001年第1期21-30,共10页
Field and greenhouse experiments were conducted to investigate the effects of cropping season, nitrogen fertilizer input and aerated fallow on the dynamics of phenol degradihg-iron reducing bacteria (PD-IRB) in tropic... Field and greenhouse experiments were conducted to investigate the effects of cropping season, nitrogen fertilizer input and aerated fallow on the dynamics of phenol degradihg-iron reducing bacteria (PD-IRB) in tropical irrigated rice (Oryza sativa L.) systems. The PD-IRB population density was monitored at different stages of rice growth in two cropping seasons (dry and early wet) in a continuous annual triple rice cropping system under irrigated condition. In this system, the high nitrogen input (195 and 135 kg N ha-1 in dry and wet seasons, respectively) plots and control plots receiving no N fertilizer were compared to investigate the effect of nitrogen rate on population size. The phenol degrading-iron reducing bacteria (PD-IRB) were abundant in soils under cropping systems of tropical irrigated rice. However, density of the bacterial populations varied with rice growth stages. Cropping seasons, rhizosphere, and aerated fallow could affect the dynamics of PD-IRB. In the field trial, viable counts of PD-IRB in the topsoil layer (15 cm) ranged between 102 and 108 cells per gram of dry soil, A steep increase in viable counts during the second half of the cropping season suggested that the population density of PD-IRB increased at advanced crop-growth stages. Population growth of PD-IRB was accelerated during the dry season compared to the wet season. In the greenhouse experiment, the adjacent aerated fallow revealed 1-2 orders of magnitude higher in most probable number (MPN) of PD-IRB than the wet fallow treated plots. As a prominent group Of Fe reducing bacteria, PD-IRB predominated in the rhizosphere of rice, since maximum MPN of PD-IRB (2.62×108 g-1 soil) was found in rhizosphere soil. Mineral N fertilizer rates showed no significant effect on PD-IRB population density. 展开更多
关键词 灌溉系统 温室 氮肥 水稻 细菌 三价铁离子 分布密度
下载PDF
铁还原细菌矿化产物及其对铁建造沉积的指示意义
16
作者 韩晓华 潘永信 《岩石学报》 SCIE EI CAS CSCD 北大核心 2024年第4期1299-1310,共12页
铁还原细菌是微生物诱导矿化的典范之一,它可以利用有机质或氢气作为电子供体还原三价铁,并在细胞外矿化形成多种含铁矿物,比如磁铁矿、菱铁矿、蓝铁矿和绿锈等矿物,从而广泛参与自然界中铁元素的生物地球化学循环过程。本文主要介绍铁... 铁还原细菌是微生物诱导矿化的典范之一,它可以利用有机质或氢气作为电子供体还原三价铁,并在细胞外矿化形成多种含铁矿物,比如磁铁矿、菱铁矿、蓝铁矿和绿锈等矿物,从而广泛参与自然界中铁元素的生物地球化学循环过程。本文主要介绍铁还原细菌矿化产物的矿物特征、形成条件和影响因素。此外,通过实验室内建立严格厌氧的环境体系,以与微量元素共沉淀的水合氧化铁为底物,本研究分别利用Feap2+和铁还原细菌Shewanella oneidensis MR-4合成非生物成因和生物成因的磁铁矿,结果发现微量元素的存在会改变磁铁矿的形貌和粒径。结合前人提出的微生物可能参与铁建造沉积的过程,本文评估了微量元素作为识别矿物成因指标的有效性,探讨铁还原细菌矿化产物对铁建造沉积的潜在贡献。 展开更多
关键词 铁还原细菌 铁建造 磁铁矿 菱铁矿 微量元素
下载PDF
含锌冶金尘泥还原焙烧-磁选分离试验
17
作者 施艳鸿 李奇勇 +3 位作者 廖靖华 李强 杨思伟 周靖洋 《有色金属工程》 CAS 北大核心 2024年第2期136-141,共6页
为实现钢铁企业含锌冶金尘泥低碳环保高效的资源化利用,对铁含量为30.38%、锌含量为4.79%的含锌冶金尘泥进行还原焙烧-磁选分离研究。结果表明,该含锌冶金尘泥直接磁选难以实现锌铁有效分离,在焙烧温度950℃、焙烧时间20 min、磁选强度1... 为实现钢铁企业含锌冶金尘泥低碳环保高效的资源化利用,对铁含量为30.38%、锌含量为4.79%的含锌冶金尘泥进行还原焙烧-磁选分离研究。结果表明,该含锌冶金尘泥直接磁选难以实现锌铁有效分离,在焙烧温度950℃、焙烧时间20 min、磁选强度100 mT等条件下,磁选精矿铁回收率为79.50%、铁含量为57.00%、锌含量为2.45%,磁选尾矿锌回收率为71.06%、锌含量为9.92%、铁含量为16.81%,锌铁分离效果较好。磁选产物中精矿主要以单质Fe为主,尾矿主要由SiO_(2)与ZnO等物相组成。 展开更多
关键词 含锌冶金尘泥 资源化利用 还原焙烧 磁选 锌铁分离
下载PDF
石墨烯介导铁还原菌耦合针铁矿体系降解四氯化碳
18
作者 刘乔丹 李辉 刘勇弟 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期46-53,共8页
研究了氧化石墨烯(GO)、还原氧化石墨烯(rGO)及双氧水改性还原氧化石墨烯(rGO(H__(2)O_(2)))3种石墨烯介导铁还原菌耦合针铁矿体系的铁还原过程以及该体系强化降解四氯化碳的机理。结果表明:不同石墨烯均能有效促进铁还原菌还原针铁矿... 研究了氧化石墨烯(GO)、还原氧化石墨烯(rGO)及双氧水改性还原氧化石墨烯(rGO(H__(2)O_(2)))3种石墨烯介导铁还原菌耦合针铁矿体系的铁还原过程以及该体系强化降解四氯化碳的机理。结果表明:不同石墨烯均能有效促进铁还原菌还原针铁矿和铁还原菌耦合针铁矿体系对四氯化碳的降解,其中rGO的促进作用最为显著,其机理主要与石墨烯表面的醌类等基团具有更强的电子传递能力、吸附态Fe(Ⅱ)浓度高及能生成还原能力强的次生铁矿蓝铁矿等因素有关。 展开更多
关键词 针铁矿 石墨烯 铁还原菌 电子穿梭体 还原脱氯
下载PDF
不同缺氧类型对小鼠血红蛋白性质的影响
19
作者 孙笑语 张岩冰 +2 位作者 陈思漫 赵峥莹 王红霞 《继续医学教育》 2024年第1期89-92,共4页
目的为了让学生更好地了解各类型缺氧所具有的特征,本实验不仅需要对各类型缺氧导致的小鼠呼吸、皮肤黏膜以及血液的颜色变化进行观察,还需检测不同类型缺氧时小鼠血红蛋白性质的改变。方法将小鼠随机分为正常对照组、密闭容器组、一氧... 目的为了让学生更好地了解各类型缺氧所具有的特征,本实验不仅需要对各类型缺氧导致的小鼠呼吸、皮肤黏膜以及血液的颜色变化进行观察,还需检测不同类型缺氧时小鼠血红蛋白性质的改变。方法将小鼠随机分为正常对照组、密闭容器组、一氧化碳组和亚硝酸钠组,使用血氧分析仪测定小鼠血液中不同类型血红蛋白的百分比含量。研究时间为2021年2月至2022年5月。结果与正常对照组相比,密闭容器组小鼠还原性血红蛋白明显增高,一氧化碳组小鼠碳氧血红蛋白明显增高,腹腔注射亚硝酸钠组小鼠高铁血红蛋白明显增高,而4组小鼠总血红蛋白比较差异无统计学意义(P>0.05)。结论本研究通过观察不同原因复制的缺氧类型中血红蛋白性质的变化,从而明确缺氧模型实验中观察到的现象之间是否存在定量关系,提高实验的准确性。 展开更多
关键词 缺氧 血红蛋白 还原血红蛋白 碳氧血红蛋白 高铁血红蛋白 低张性缺氧 血液性缺氧
下载PDF
火电厂再生水中的微生物对管道的腐蚀行为研究
20
作者 武梦婷 朱志平 +2 位作者 曹洁 汤甜 石西尧 《材料保护》 CAS CSCD 2024年第6期59-67,80,共10页
为探究火电厂以再生水为水源时供水管道的微生物腐蚀行为,采用环状生物膜挂片反应器,动态模拟了再生水管道运行状况,通过测定溶液pH值、电导率,试片失重,电化学参数(如氧化还原电位、极化曲线、交流阻抗)、细菌数量并结合SEM、EDS、XRD... 为探究火电厂以再生水为水源时供水管道的微生物腐蚀行为,采用环状生物膜挂片反应器,动态模拟了再生水管道运行状况,通过测定溶液pH值、电导率,试片失重,电化学参数(如氧化还原电位、极化曲线、交流阻抗)、细菌数量并结合SEM、EDS、XRD等手段研究了铁细菌(IOB)、硫酸盐还原菌(SRB)及这2种混合菌对Q235钢腐蚀的影响过程和机理。结果表明,2种细菌数量随时间的延长而增长,再生水的pH值先降后升、电导率则稳步增长,环境中的细菌数与此时管材的腐蚀速率呈正相关性,SRB是影响微生物腐蚀的主要菌种;通过EDS和XRD分析发现不同环境下的腐蚀产物主要成分:IOB时腐蚀产物以FeOOH为主,存在少量Fe_(2)O_(3)、Fe_(3)O_(4);SRB时腐蚀产物主要为氧化铁和硫化铁;而SRB+IOB共存时主要腐蚀产物为Fe_(2)O_(3)、Fe_(3)O_(4)和FeS;同时管道前期表面产生的微生物膜和腐蚀产物会抑制Q235的腐蚀,后期微生物膜失活、覆盖的腐蚀产物脱落,又会使腐蚀加速。 展开更多
关键词 火电厂再生水 硫酸盐还原菌 铁细菌 电化学 微生物 腐蚀
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部