明确土壤蒸发的变化过程和影响因素,建立简便且具有较高精度的计算模型,对提高水资源利用效率,减少无效水分消耗具有重要指导意义。以温室滴灌黄瓜为试验对象,对土壤蒸发进行了连续测量,引入Priestley-Taylor模型的土壤蒸发模块,将蒸发...明确土壤蒸发的变化过程和影响因素,建立简便且具有较高精度的计算模型,对提高水资源利用效率,减少无效水分消耗具有重要指导意义。以温室滴灌黄瓜为试验对象,对土壤蒸发进行了连续测量,引入Priestley-Taylor模型的土壤蒸发模块,将蒸发过程分为2个阶段,探讨了3个限制系数(Deardorff,1977:f_(sw)-1;Yao et al.,2013:f_(sw)-2;Ershadi et al.,2014:f_(sw)-3)对模型精度的影响。结果表明:全生育期温室滴灌黄瓜的土壤蒸发在0.13~9.15 g/d之间变化,平均值为3.15 g/d,总体表现为“增加-降低-增加”的变化趋势;土壤蒸发与表层含水率和LAI均呈e指数函数关系,与含水率呈正比,与LAI呈反比;土壤蒸发系数与含水率变化过程相似,全生育期在0.49~1.26之间变化;3个模型在第2阶段的模拟精度较高,且f_(sw)-1的精度优于f_(sw)-2和f_(sw)-3,MAE和RMSE分别为0.14和0.21 mm/d。因此,采用PT-f_(sw)-1模型模拟滴灌条件下的土壤蒸发具有较高精度,可为精确掌握温室滴灌黄瓜水分消耗提供依据。展开更多
The aim of drip fertigation is synchronising the application of water and nutrients with crop requirements, and maintaining the proper concentration and distribution of nutrient and water in the soil. The wetting patt...The aim of drip fertigation is synchronising the application of water and nutrients with crop requirements, and maintaining the proper concentration and distribution of nutrient and water in the soil. The wetting patterns and nutrient distributions under drip fertigation have been proved to be closely related to the fertigation strategies. In order to find out the critical factors that affect the nutrient distribution under different drip fertigaiton strategies, a computer simulation model HYDRUS2D/3D was used to simulate the water and nitrate distribution for various fertigation strategies from a surface point source. Simulation results were compared with the observed ones from our previous studies. A 15° wedge-shaped plexiglass container was used in our experiment to represent one-twenty-fourth of the complete cylinder. The height of container is 40 cm, and the radius is 41 cm. The ammonium nitrate solution was added through a no. 7 needle connected to a Mariotte tube with a flexible hose. The soil water content, nitrate and ammonium concentrations were measured. The comparison of simulated and observed data demonstrated that the model performed reliably. The numerical analysis for various fertigation strategies from a surface point source showed that:(1) The total amount of irrigation water, the concentration of the fertilizer solution and the amount of pure water used to flush the pipeline after fertilizer solution application are the three critical factors influencing the distribution of water and fertilizer nitrogen in the soil.(2) The fresh water irrigation duration prior to fertigation has no obvious effect on nitrate distribution. The longer flushing time period after fertigation resulted in nitrate accumulation closer to the wetting front. From the point of avoiding the possibility of nitrate loss from the root zone, we recommended that the flushing time period should be as shorter as possible.(3) For a given amount of fertilizer, higher concentration of the fertilizer applied solution reduces the potential of nitrate leaching in drip irrigation system. While, lower concentration of the fertilizer solution resulted in an uniform distribution of nitrate band closer to the wetted front.展开更多
Available water for human needs and agriculture is a growing global concern. Agriculture uses approximately 70% of global freshwater, mainly for irrigation. The Lower Fraser Valley (LFV), British Columbia, is one of t...Available water for human needs and agriculture is a growing global concern. Agriculture uses approximately 70% of global freshwater, mainly for irrigation. The Lower Fraser Valley (LFV), British Columbia, is one of the most productive agricultural regions in Canada, supporting livestock production and a wide variety of crops. Water scarcity is a growing concern that threatens the long-term productivity, sustainability, and economic viability of the LFV’s agriculture. We used the BC Agriculture Water Demand Model as a tool to determine how crop choice, irrigation system, and land-use changes can affect predicted water requirements under these different conditions, which can aid stakeholders to formulate better management decisions. We conducted a comparative assessment of the irrigation water demand of seven major commercial crops, by distinct soil management groups, at nineteen representative sites, that use both sprinkler vs drip irrigation. Drip irrigation was consistently more water-efficient than sprinkler irrigation for all crops. Of the major commercial crops assessed, raspberries were the most efficient in irrigation water demand, while forage and pasture had the highest calculated irrigation water demand. Significant reductions in total irrigation water demand (up to 57%) can be made by switching irrigation systems and/or crops. This assessment can aid LFV growers in their land-use choices and could contribute to the selection of water management decisions and agricultural policies.展开更多
<span style="font-family:Verdana;">Modeling of irrigation methods </span><span style="font-family:Verdana;">is</span><span style="font-family:""><spa...<span style="font-family:Verdana;">Modeling of irrigation methods </span><span style="font-family:Verdana;">is</span><span style="font-family:""><span style="font-family:Verdana;"> one of the most important techniques that contribute to the future of modern agriculture. This will conserve water as water scarcity is a major threat for agriculture. In this study, AquaCrop model was used to model different irrigation methods of maize in field trails in Al-Yousifya, 15 km Southwest of Baghdad. Field experiments were conducted for two seasons during 2016 and 2017 using five irrigation methods including furrow, surface drip and subsurface drip with three patterns of emitter depth (10, 20 and 30 cm) irrigation. AquaCrop simulations of biomass, grain yield, harvest index and water productivity were validated using different statistical parameters under the natural conditions obtained in the study area. For 2016 and 2017 seasons, results of R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> were 0.98 and 0.99, 0.99 and 0.99, 0.99 and 0.97, and 0.8 and 0.73 for biomass, grain yield, harvest index and water productivity, respectively. The study has conducted that simulation using AquaCrop is considered very efficient tool for modeling of different irrigation applications</span><span style="font-family:Verdana;"> for maize production under the existing conditions</span><span style="font-family:Verdana;"> in the central region of Iraq.展开更多
<div style="text-align:justify;"> Due to the poor anti-clogging performance of the common drip irrigation emitters, this paper designed a new bionic flow channel in the emitter based on the shape of sh...<div style="text-align:justify;"> Due to the poor anti-clogging performance of the common drip irrigation emitters, this paper designed a new bionic flow channel in the emitter based on the shape of shark dorsal fin. After preliminary structural design, the computational fluid dynamics (CFD) simulation showed that the bionic emitter exhibited superior anti-clogging performance and reasonable hydraulic performance. The passage rate of particles of the bionic emitter in simulation reached 96.3% which was 37.6% higher than 70% of traditional emitter, and the discharge exponent reached 0.4995 which was close to traditional emitter. Physical experiments were consistent with the CFD results, which confirmed the correctness of simulation. After a short cycle anti-clogging performance experiment, the bionic emitter still maintained 96.09% of the initial flow rate. </div>展开更多
文摘明确土壤蒸发的变化过程和影响因素,建立简便且具有较高精度的计算模型,对提高水资源利用效率,减少无效水分消耗具有重要指导意义。以温室滴灌黄瓜为试验对象,对土壤蒸发进行了连续测量,引入Priestley-Taylor模型的土壤蒸发模块,将蒸发过程分为2个阶段,探讨了3个限制系数(Deardorff,1977:f_(sw)-1;Yao et al.,2013:f_(sw)-2;Ershadi et al.,2014:f_(sw)-3)对模型精度的影响。结果表明:全生育期温室滴灌黄瓜的土壤蒸发在0.13~9.15 g/d之间变化,平均值为3.15 g/d,总体表现为“增加-降低-增加”的变化趋势;土壤蒸发与表层含水率和LAI均呈e指数函数关系,与含水率呈正比,与LAI呈反比;土壤蒸发系数与含水率变化过程相似,全生育期在0.49~1.26之间变化;3个模型在第2阶段的模拟精度较高,且f_(sw)-1的精度优于f_(sw)-2和f_(sw)-3,MAE和RMSE分别为0.14和0.21 mm/d。因此,采用PT-f_(sw)-1模型模拟滴灌条件下的土壤蒸发具有较高精度,可为精确掌握温室滴灌黄瓜水分消耗提供依据。
基金financially supported by the Non-Profit National Research Institute,Ministry of Finance of China(IARRP-2012-202-3)the Special Fund for Agro-scientific Research in the Public Interest,China(201203077-04-05)
文摘The aim of drip fertigation is synchronising the application of water and nutrients with crop requirements, and maintaining the proper concentration and distribution of nutrient and water in the soil. The wetting patterns and nutrient distributions under drip fertigation have been proved to be closely related to the fertigation strategies. In order to find out the critical factors that affect the nutrient distribution under different drip fertigaiton strategies, a computer simulation model HYDRUS2D/3D was used to simulate the water and nitrate distribution for various fertigation strategies from a surface point source. Simulation results were compared with the observed ones from our previous studies. A 15° wedge-shaped plexiglass container was used in our experiment to represent one-twenty-fourth of the complete cylinder. The height of container is 40 cm, and the radius is 41 cm. The ammonium nitrate solution was added through a no. 7 needle connected to a Mariotte tube with a flexible hose. The soil water content, nitrate and ammonium concentrations were measured. The comparison of simulated and observed data demonstrated that the model performed reliably. The numerical analysis for various fertigation strategies from a surface point source showed that:(1) The total amount of irrigation water, the concentration of the fertilizer solution and the amount of pure water used to flush the pipeline after fertilizer solution application are the three critical factors influencing the distribution of water and fertilizer nitrogen in the soil.(2) The fresh water irrigation duration prior to fertigation has no obvious effect on nitrate distribution. The longer flushing time period after fertigation resulted in nitrate accumulation closer to the wetting front. From the point of avoiding the possibility of nitrate loss from the root zone, we recommended that the flushing time period should be as shorter as possible.(3) For a given amount of fertilizer, higher concentration of the fertilizer applied solution reduces the potential of nitrate leaching in drip irrigation system. While, lower concentration of the fertilizer solution resulted in an uniform distribution of nitrate band closer to the wetted front.
文摘Available water for human needs and agriculture is a growing global concern. Agriculture uses approximately 70% of global freshwater, mainly for irrigation. The Lower Fraser Valley (LFV), British Columbia, is one of the most productive agricultural regions in Canada, supporting livestock production and a wide variety of crops. Water scarcity is a growing concern that threatens the long-term productivity, sustainability, and economic viability of the LFV’s agriculture. We used the BC Agriculture Water Demand Model as a tool to determine how crop choice, irrigation system, and land-use changes can affect predicted water requirements under these different conditions, which can aid stakeholders to formulate better management decisions. We conducted a comparative assessment of the irrigation water demand of seven major commercial crops, by distinct soil management groups, at nineteen representative sites, that use both sprinkler vs drip irrigation. Drip irrigation was consistently more water-efficient than sprinkler irrigation for all crops. Of the major commercial crops assessed, raspberries were the most efficient in irrigation water demand, while forage and pasture had the highest calculated irrigation water demand. Significant reductions in total irrigation water demand (up to 57%) can be made by switching irrigation systems and/or crops. This assessment can aid LFV growers in their land-use choices and could contribute to the selection of water management decisions and agricultural policies.
文摘<span style="font-family:Verdana;">Modeling of irrigation methods </span><span style="font-family:Verdana;">is</span><span style="font-family:""><span style="font-family:Verdana;"> one of the most important techniques that contribute to the future of modern agriculture. This will conserve water as water scarcity is a major threat for agriculture. In this study, AquaCrop model was used to model different irrigation methods of maize in field trails in Al-Yousifya, 15 km Southwest of Baghdad. Field experiments were conducted for two seasons during 2016 and 2017 using five irrigation methods including furrow, surface drip and subsurface drip with three patterns of emitter depth (10, 20 and 30 cm) irrigation. AquaCrop simulations of biomass, grain yield, harvest index and water productivity were validated using different statistical parameters under the natural conditions obtained in the study area. For 2016 and 2017 seasons, results of R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> were 0.98 and 0.99, 0.99 and 0.99, 0.99 and 0.97, and 0.8 and 0.73 for biomass, grain yield, harvest index and water productivity, respectively. The study has conducted that simulation using AquaCrop is considered very efficient tool for modeling of different irrigation applications</span><span style="font-family:Verdana;"> for maize production under the existing conditions</span><span style="font-family:Verdana;"> in the central region of Iraq.
文摘<div style="text-align:justify;"> Due to the poor anti-clogging performance of the common drip irrigation emitters, this paper designed a new bionic flow channel in the emitter based on the shape of shark dorsal fin. After preliminary structural design, the computational fluid dynamics (CFD) simulation showed that the bionic emitter exhibited superior anti-clogging performance and reasonable hydraulic performance. The passage rate of particles of the bionic emitter in simulation reached 96.3% which was 37.6% higher than 70% of traditional emitter, and the discharge exponent reached 0.4995 which was close to traditional emitter. Physical experiments were consistent with the CFD results, which confirmed the correctness of simulation. After a short cycle anti-clogging performance experiment, the bionic emitter still maintained 96.09% of the initial flow rate. </div>